Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow

2006 ◽  
Vol 38 (4-5) ◽  
pp. 310-322 ◽  
Author(s):  
Y. Bazilevs ◽  
V. M. Calo ◽  
Y. Zhang ◽  
T. J. R. Hughes
Author(s):  
Esfandyar Kouhi ◽  
Yos Morsi

In this paper the fluid structure interaction in stentless aortic heart valve during acceleration phase was performed successfully using the commercial ANSYS/CFX package. The aim is to provide unidirectional coupling FSI analysis of physiological blood flow within an anatomically corrected numerical model of stentless aortic valve. Pulsatile, Newtonian, and turbulent blood flow rheology at aortic level was applied to fluid domain. The proposed structural prosthesis had a novel multi thickness leaflet design decreased from aortic root down to free age surface. An appropriate interpolation scheme used to import the fluid pressure on the structure at their interface. The prosthesis deformations over the acceleration time showed bending dominant characteristic at early stages of the cardiac cycle. More stretching and flattening observed in the rest of the times steps. The multi axial Von Mises stress data analysis was validated with experimental data which confirmed the initial design of the prosthesis.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Abdalla Mohamed AlAmiri

The current numerical investigation tackles the fluid-structure interaction in a blood vessel subjected to a prescribed heating scheme on tumor tissues under thermal therapy. A pulsating incompressible laminar blood flow was employed to examine its impact on the flow and temperature distribution within the blood vessel. In addition, the arterial wall was modeled using the volume-averaged porous media theory. The motion of a continuous and deformable arterial wall can be described by a continuous displacement field resulting from blood pressure acting on the tissue. Moreover, discretization of the transport equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. The numerical results were validated by comparing them against documented studies in the literature. Three various heating schemes were considered: constant temperature, constant wall flux, and a step-wise heat flux. The first two uniform schemes were found to exhibit large temperature variation within the tumor, which might affect the surrounding healthy tissues. Meanwhile, larger vessels and flexible arterial wall models render higher variation of the temperature within the treated tumor, owing to the enhanced mixing in the vicinity of the bottom wall.


Author(s):  
Alejandro Roldán ◽  
Nancy Sweitzer ◽  
Tim Osswald ◽  
Naomi Chesler

Modeling pulsatile flow past heart valves remains a relatively unexplored but critical area. Due to the geometric complexity and the interaction between the flowing blood and the heart valve leaflets, existing numerical techniques that require domain discretization, such as finite element methods or finite difference techniques, cannot fully represent the moving and deforming boundaries present in an operating valve. Our aim is to develop a technique to model the flow through heart valves which includes the interaction between the blood flow and the valve leaflets using the radial functions method (RFM). The RFM is a meshless technique that fully accounts for moving and deforming surfaces and thus is well suited to model the blood flow and its interaction with leaflet motion. Here we present a 2D fluid structure interaction (FSI) model of the blood flow through a bileaflet mechanical heart valve (MHV).


Author(s):  
J. M. B. Kroot ◽  
C. G. Giannopapa

Fluid-structure interaction in viscoelastic vessels is often modelled with the motivation to understand arterial blood flow. Traveling waves in flexible vessels have been analyzed and experiments have been performed by many researchers. Theoretical models often focus either on the flow of the liquid (assuming that the wall is rigid), or on the displacement of the wall (assuming that the wall is elastic). Analytical theories on the interaction between the fluid and the wall are limited; models are typically based on numerical techniques. For assessing the validity of analytical and numerical models well-defined in-vitro experiments are of great importance. The objective of this paper is to present a transmission line analytical theory and validate it against experimental data obtained for aortic analogues. Transition line theory allows for including non-uniformities of vessels by capturing them as several uniform segments. The analytical theory is set up by multiple sections and a formulation is derived that incorporates the multiple reflections and transmissions of propagating waves through the interfaces of these sections. The pressure, flow and wall distention results obtained from the analytical model are compared with experimental data from a straight uniform tube and a tapered one with aortic relevance. The analytical results and the experimental measurements were found to be in good agreement for both the uniform and tapered tubes.


Perfusion ◽  
2021 ◽  
pp. 026765912199854
Author(s):  
Mohammad Javad Ghasemi Pour ◽  
Kamran Hassani ◽  
Morteza Khayat ◽  
Shahram Etemadi Haghighi

Background and objectives: Fluid structure interaction (FSI) is defined as interaction of the structures with contacting fluids. The aortic valve experiences the interaction with blood flow in systolic phase. In this study, we have tried to predict the hemodynamics of blood flow through a normal and stenotic aortic valve in two relaxation and exercise conditions using a three-dimensional FSI method. Methods: The aorta valve was modeled as a three-dimensional geometry including a normal model and two others with 25% and 50% stenosis. The geometry of the aortic valve was extracted from CT images and the models were generated by MMIMCS software and then they were implemented in ANSYS software. The pulsatile flow rate was used for all cases and the numerical simulations were conducted based on a time-dependent domain. Results: The obtained results including the velocity, pressure, and shear stress contours in different systolic time sequences were explained and discussed. The maximum blood flow velocity in relaxation phase was obtained 1.62 m/s (normal valve), 3.78 m/s (25% stenosed valve), and 4.73 m/s (50% stenosed valve). In exercise condition, the maximum velocities are 2.86, 4.32, and 5.42 m/s respectively. The maximum blood pressure in relaxation phase was calculated 111.45 mmHg (normal), 148.66 mmHg (25% stenosed), and 164.21 mmHg (50% stenosed). However, the calculated values in exercise situation were 129.57, 163.58, and 191.26 mmHg. The validation of the predicted results was also conducted using existing literature. Conclusions: We believe that such model are useful tools for biomechanical experts. The further studies should be done using experimental data and the data are implemented on the boundary conditions for better comparison of the results.


Sign in / Sign up

Export Citation Format

Share Document