Unit Impulse Response Estimation for Structural Damage Detection Under Planar Multiple Excitations

2013 ◽  
Vol 81 (2) ◽  
Author(s):  
Siu-seong Law ◽  
Jian-fu Lin

An unit impulse response (UIR) function is an inherent system function that depends only on the structure and the locations of excitation. When the structure is under general excitation, the effect can be obtained via Duhamel integral between the UIR function and the excitation. The possibility of the UIR function as a damage detection index under general excitation is studied here. However, the UIRs from multiple excitations will contribute to the identification equation together. Therefore, the estimation of UIRs will most probably become underdetermined with a limited number of measurements leading to an incorrect or nonfeasible solution of the inverse problem. This report addresses this problem by developing a transformation between the UIRs to facilitate the conversion of a multiple excitations problem into an equivalent single excitation problem. However, the method is limited to planar problems and the reference response is confined to those with larger vibration amplitude. The extraction of the UIR via Tikhonov regularization from the measured acceleration is then described. Numerical studies with a 31-bar plane truss structure are used to illustrate the performances of the proposed approach with different damage scenarios with or without noise effect and model errors. The stability of the UIR estimation with different periods of measured data is also studied. Moreover, this paper studies the effect of using a reduced number of sensors and an increased sampling rate. Results show that the regularization-based approach with the new transformation matrix is accurate and effective for the inverse solution and it is robust to measurement noise in the damage detection process.

2006 ◽  
Vol 74 (2) ◽  
pp. 375-377 ◽  
Author(s):  
S. S. Law ◽  
X. Y. Li

This paper discusses the extraction of the wavelet-based impulse response function from the acceleration response using the discrete wavelet transform (DWT). The analytical formulation of the sensitivity of the DWT coefficient of the impulse response function with respect to a system parameter is then presented for structural damage detection. A numerical example with a 31-bar plane truss structure is used to verify the proposed method with different damage scenarios with or without model error and noise effect.


Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


Geophysics ◽  
1965 ◽  
Vol 30 (1) ◽  
pp. 32-50 ◽  
Author(s):  
S. N. Domenico

Phase‐distortionless filtering is accomplished readily in a magnetic delay‐line filter. The necessary and sufficient condition for the elimination of phase distortion is a symmetrical unit‐impulse response or operator. Three‐, six‐, nine‐, and twelve‐point operators were selected from an analytical filter for which the unit‐impulse response is symmetrical. These were applied in a delay‐line filter achieved in conventional magnetic‐tape playback equipment. Advantages of phase‐distortionless filtering demonstrated here are (1) elimination of frequency‐dependent time lags and (2) identification of time‐invariant points of seismic events on a multifiltered seismogram display. The latter should faciliate the correlation of reflections between seismometer group positions and interlocking seismograms. Filtering with each of the above four operators demonstrated that the three‐point operator performs nearly as effectively as the six‐, nine‐, and twelve‐point operators.


1993 ◽  
Vol 13 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Vincent J. Cunningham ◽  
Terry Jones

We describe a new technique for the analysis of dynamic positron emission tomography (PET) studies in humans, where data consist of the time courses of label in tissue regions of interest and in arterial blood, following the administration of radiolabeled tracers. The technique produces a simple spectrum of the kinetic components which relate the tissue's response to the blood activity curve. From this summary of the kinetic components, the tissue's unit impulse response can be derived. The convolution of the arterial input function with the derived unit impulse response function gives the curve of best fit to the observed tissue data. The analysis makes no a priori assumptions regarding the number of compartments or components required to describe the time course of label in the tissue. Rather, it is based on a general linear model, presented here in a formulation compatible with its solution using standard computer algorithms. Its application is illustrated with reference to cerebral blood flow, glucose utilization, and ligand binding. The interpretation of the spectra, and of the tissue unit impulse response functions, are discussed in terms of vascular components, unidirectional clearance of tracer by the tissue, and reversible and irreversible phenomena. The significance of the number of components which can be identified within a given datum set is also discussed. The technique facilitates the interpretation of dynamic PET data and simplifies comparisons between regions and between subjects.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5413
Author(s):  
Jian-Fu Lin ◽  
Junfang Wang ◽  
Li-Xin Wang ◽  
Siu-seong Law

Impulse response function (IRF) is an ideal structural damage index for the identification of structural damage associated with changes in modal properties. However, IRFs from multiple excitations applied at different degrees-of-freedoms jointly contribute to the dynamic response, and their estimation is often underdetermined. Although some efforts have been devoted to the estimation of IRF for a structure under single excitation, the case under multiple excitations has not been fully investigated yet. The estimation of IRF under multiple excitations is generally an ill-conditioned inverse problem such that an incorrect or non-feasible solution is common, preventing its application to damage detection. This work explores this problem by introducing dimensionality reduction transformation matrices relating two sets of IRFs of a structure with discussions on the performance of the non-unique transformation matrices. Then, the extraction of IRF via wavelet-based and Tikhonov regularization-based methods are compared. Finally, a numerical study with a truss structure is conducted to validate the estimation of the IRFs and to demonstrate their applicability for damage detection under seismic excitations. Both the damage locations and severity are accurately identified, indicating the proposed methodology can enable the IRFs estimation under multiple excitations for successful damage detection.


2011 ◽  
Vol 186 ◽  
pp. 383-387 ◽  
Author(s):  
Xi Chen ◽  
Ling Yu

Based on concepts of structural modal flexibility and modal assurance criterion (MAC), a new objective function is defined and studied for constrained optimization problems (COP) on structural damage detection (SDD) in this paper. Compared with traditionally objective function, which is defined based on natural frequencies and MAC, effect of objective functions on robustness of SDD calculation is evaluated through numerical simulation of a 2-storey rigid frame. Structural damages are identified by solving the COP on SDD based on an improved particle swarm optimization (IPSO) algorithm. Weak and multiple damage scenarios are mainly considered in various noise conditions. Some illustrated results show that the newly defined objective function is better than the traditional ones. It can be used to identify the damage locations but also to quantify the severity of weak and multiple damages in measurement noise conditions.


Sign in / Sign up

Export Citation Format

Share Document