Operational Space Inertia for Closed-Chain Robotic Systems

Author(s):  
Abhinandan Jain

Operational space modeling and control are important techniques for robot manipulation. A key element of operational space control is the operational space inertia matrix (OSIM). The OSIM matrix represents a mapping between end-effector spatial forces and spatial accelerations and is configuration-dependent. In the case of multiple end-effectors, the OSIM also encapsulates the dynamics cross coupling between the end-effectors. The rich structure of the OSIM for tree systems has been exploited by researchers for analysis and the development of low-order computational algorithms. Extending such techniques to the OSIM for closed-chain robotic systems is the focus of this short paper. We derive explicit analytical expressions for the closed-chain OSIM that reveals its close relationship to an extended tree-system OSIM.

Author(s):  
Jonathan C. Mayo-Maldonado ◽  
Julio C. Rosas-Caro ◽  
Ruben Salas-Cabrera ◽  
Aaron Gonzalez-Rodriguez ◽  
Omar F. Ruiz-Martinez ◽  
...  

2013 ◽  
Vol 40 (1) ◽  
pp. 163-187
Author(s):  
Mihailo Lazarevic

In this paper, the applications of biologically inspired modeling and control of (bio)mechanical (non)redundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (bio)mechanical system may be obtained using another biological concept called distributed positioning (DP), which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying), which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC).


Sign in / Sign up

Export Citation Format

Share Document