Lower Bound Methods in Elastic-Plastic Shakedown Analysis

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Wolf Reinhardt ◽  
Reza Adibi-Asl

Several methods were proposed in recent years that allow the efficient calculation of elastic and elastic-plastic shakedown limits. This paper establishes a uniform framework for such methods that are based on perfectly-plastic material behavior, and demonstrates the connection to Melan's theorem of elastic shakedown. The paper discusses implications for simplified methods of establishing shakedown, such as those used in the ASME Code. The framework allows a clearer assessment of the limitations of such simplified approaches. Application examples are given.

Author(s):  
Wolf Reinhardt ◽  
Reza Adibi-Asl

Several methods were proposed in recent years that allow the efficient calculation of elastic and elastic-plastic shakedown limits. This paper establishes a uniform framework for such methods that are based on perfectly-plastic material behavour, and demonstrates the connection to Melan’s theorem of elastic shakedown. The paper discusses implications for simplified methods of establishing shakedown, such as those used in the ASME Code. The framework allows a clearer assessment of the limitations of such simplified approaches. Application examples are given.


1993 ◽  
Vol 60 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Castrenze Polizzotto

Following the results of a companion paper, the concept of plastic shakedown limit load is introduced for an elastic-perfectly plastic material structure subjected to combined cyclic (mechanical and/or kinematical) loads and steady (mechanical) load. Static and kinematic approaches are available for the computation of this load, in perfect analogy with the classic (elastic) shakedown limit load. The plastic shakedown limit state of the structure being in an impending alternating plasticity collapse is studied and a number of interesting features of it are pointed out.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Dan Vlaicu

A cyclically loaded structure made of elastic-plastic material is considered as an elastic shakedown if plastic straining occurs in the first few cycles and the sequent response is wholly elastic. In this paper, the finite element method is used to develop upper and lower bound limits for the elastic shakedown of structures under periodic loading conditions. Linear methods using elastic compensation approach and the residual stress method derived from Melan’s theorem are used to generate the lower bound limit for the shakedown load, while the upper bound is found through a method derived from Koiter’s theorem. Furthermore, the results are compared with cycle-by-cycle method based on nonlinear material properties.


2003 ◽  
Vol 125 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Martin Muscat ◽  
Donald Mackenzie

An investigation of the shakedown behavior of axisymmetric nozzles under internal pressure is presented. The analysis is based on elastic-plastic finite element analysis and Melan’s lower bound shakedown theorem. Calculated shakedown pressures are compared with values from the literature and with the ASME Boiler and Pressure Vessel Code Section VIII Division 2 primary plus secondary stress limits. Results obtained by the lower bound method are also verified by cyclic elastic-plastic finite element analysis.


1993 ◽  
Vol 60 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Castrenze Polizzotto

For a structure of elastic perfectly plastic material subjected to a given cyclic (mechanical and/or kinematical) load and to a steady (mechanical) load, the conditions are established in which plastic shakedown cannot occur whatever the steady load, and thus the structure is safe against the alternating plasticity collapse. Static and kinematic theorems, analogous to those of classical shakedown theory, are presented.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


Wear ◽  
2001 ◽  
Vol 247 (1) ◽  
pp. 41-54 ◽  
Author(s):  
S. Fouvry ◽  
Ph. Kapsa ◽  
L. Vincent

Author(s):  
J. M. Stephan ◽  
C. Gourdin ◽  
J. Angles ◽  
S. Quilici ◽  
L. Jeanfaivre

The distribution of unsteady temperatures in the wall of the 6" FATHER mixing tee mock-up is calculated for a loading configuration: The results seem realistic even if they are not still very accurate (see paper PVP2005-71592 [11]). On this basis, thermal stresses are evaluated for elastic and elastic-plastic material behavior. Then, different types of fatigue criteria are used to evaluate the fatigue damage. The paper develops a brief description of the criteria, the corresponding fatigue damage evaluation and attempts to explain the differences.


Author(s):  
Hisashi Koike ◽  
Masaji Mori ◽  
Daisuke Fujiwara ◽  
Takashi Shimomura

The thimble tube, which is made of Zircaly-4, is one of the main components of a PWR fuel assembly. The thimble tube has an important role as a structural member of the skeleton. Another role of the thimble tube is to guide a rod cluster control assembly (RCCA) for insertion during the reactor operation, and the function has to be assured not only in normal operation but in a seismic event. In a horizontal seismic event, the fuel assembly vibrates laterally, which gives bending moment to the thimble tube. In addition, axial compressive force acts on the thimble tube in a vertical seismic event. The integrity of the thimble tube has to be maintained while this force and moment act. Mitsubishi has confirmed by the elastic stress analysis that the stress of the thimble tube is lower than the limit value requested for the seismic event. The stress evaluation method is based on the ASME code. The ASME code also describes the limit analysis which is available when the predicted stress is beyond elastic region of the material. In the analysis, the material is assumed to be elastic-perfectly plastic, and the maximum load that the structure can carry is calculated. For the reason mentioned above, the allowable limit of the thimble tube should be determined as a function between the force and the moment. We are planning to examine the allowable limit experimentally. As a step before testing, an analytical approach for the limit is discussed in this paper. Firstly, the allowable limit is calculated by a beam model assuming elastic-perfectly plastic material, based on the ASME code. Secondly, a 3D model analysis with elastic-plastic material is performed to predict the practical strength. Based on the comparison with the analysis using elastic-perfectly plastic material, ASME based limit is considerably conservative compared with the one with the actual stress-strain curve. Conversely, this means there is enough room to rationalize the allowable limit. As the future work, the experiment will be conducted to obtain the practical limit of the thimble tube and to verify the analysis results.


Sign in / Sign up

Export Citation Format

Share Document