Time-Independent Plasticity Related to Critical Point of Free Energy Function and Functional

Author(s):  
Q. Yang ◽  
Y. R. Liu ◽  
X. Q. Feng ◽  
S. W. Yu

In this paper, time-independent plasticity is addressed within the thermodynamic framework with internal variables by Rice (1971, “Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19, pp. 433–455). It is shown in this paper that the existence of a free energy function along with thermodynamic equilibrium conditions directly leads to associated flow rules. The time-independent inelastic behaviors can be fully determined by the Hessian matrix at the nondegenerate critical point of the free energy function. The normality rule of Hill and Rice (1973, “Elastic Potentials and the Structure of Inelastic Constitutive Laws,” SIAM J. Appl. Math., 25, pp. 448–461) or the Il'yushin (1961, “On a Postulate of Plasticity,” J. Appl. Math. Mech. 25, pp. 746–750) postulate is just a stability requirement of the thermodynamic equilibrium. The existence of a free energy functional which is not a direct function of the internal variables, along with thermodynamic equilibrium conditions also leads to associated flow rules. The time-independent inelastic behaviors with the free energy functional can be fully determined by the quasi Hessian matrix at the quasi critical point of the free energy functional. With the free energy functional, the thermodynamic forces conjugate to the internal variables are nonconservative and are constructed based on Darboux theorem. Based on the constructed nonconservative forces, it is shown that there may exist several possible thermodynamic equilibrium mechanisms for the thermodynamic system of the material sample. Therefore, the associated flow rules based on free energy functionals may degenerate into nonassociated flow rules. The symmetry of the conjugate forces plays a central role for the characteristics of time-independent plasticity.

2013 ◽  
Vol 353-356 ◽  
pp. 837-841 ◽  
Author(s):  
Jing Yu Chen ◽  
Ying Hai

According the theory of thermodynamics with internal variables, the relation between yield function and dissipation function and the condition of associated flow rule in stress space are presented; the elastoplastic matrix of the incremental form of the material constitutive equation is given out, this matrix is determined by the free energy function and the yield function. The Gibbs free energy function of solid phase of saturated soils subjected triaxial compression stress state is presented, and using the constitutive theory of thermodynamics with internal variables, yield function and stress-strain relation of the modified Cam-Clay model is obtained by the free energy function and the dissipation function. These results prove the correctness and feasibility for this constitutive theory to construct elastoplastic constitutive relation of saturated soils.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qiang Yang ◽  
Chaoyi Li ◽  
Yaoru Liu

Abstract The authors presented a time-independent plasticity approach, where a typical plastic-loading process is viewed as an infinitesimal state change of two neighboring equilibrium states, and the yield and consistency conditions are formulated based on the conjugate forces of the internal variables. In this paper, a stability condition is proposed, and the yield, consistency, and stability conditions are reformatted by the inelastic differential form of the Gibbs free energy. The Gibbs equation in thermodynamics with internal variables is a representation to the differential form of the Gibbs free energy by a single Gibbs free energy function. In this paper, we propose the so-called extended Gibbs equation, where the differential form may be represented by multiple potential functions. Various associated and nonassociated plasticity with a single or multiple yield functions can be derived from various representations based on the reformulated approach, where yield and plastic potential functions are in the form of inelastic differentials of the potential functions. The generalized Drucker inequality can only be derived from the one-potential representation as a stability condition. For a multiple-potential representation, the stability condition can be ensured if the multiple potentials are concave functions and possess the same stationary point.


1999 ◽  
Vol 580 ◽  
Author(s):  
M. E. Gracheva ◽  
J. M. Rickman ◽  
J. D. Gunton ◽  
D. C. Coffey

AbstractResults are presented for the coarse grained distribution function and Ginzburg-Landau free energy function for coexistence of liquid and gas phases. These distribution functions were obtained by two different methods: 1) the compilation of particle density information from different coarse-grained cells using the canonical ensemble, and 2) the compilation of energy and density information from a single simulation cell by tuning the chemical potential using the grand-canonical ensemble. Both methods permit the calculation of a coarse-grained free energy functional which links the atomic and mesoscopic length scales.


1983 ◽  
Vol 48 (10) ◽  
pp. 2888-2892 ◽  
Author(s):  
Vilém Kodýtek

A special free energy function is defined for a solution in the osmotic equilibrium with pure solvent. The partition function of the solution is derived at the McMillan-Mayer level and it is related to this special function in the same manner as the common partition function of the system to its Helmholtz free energy.


2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Bart van Ginkel ◽  
Bart van Gisbergen ◽  
Frank Redig

AbstractWe study a model of active particles that perform a simple random walk and on top of that have a preferred direction determined by an internal state which is modelled by a stationary Markov process. First we calculate the limiting diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient is in some sense maximal for reversible state processes. Further, we obtain a large deviations principle for the active particle in terms of the large deviations rate function of the empirical process corresponding to the state process. Again we show that the rate function and free energy function are (pointwise) optimal for reversible state processes. Finally, we show that in the case with two states, the Fourier–Laplace transform of the distribution, the moment generating function and the free energy function can be computed explicitly. Along the way we provide several examples.


Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


Nonlinearity ◽  
2009 ◽  
Vol 22 (12) ◽  
pp. 2919-2952 ◽  
Author(s):  
E A Carlen ◽  
M C Carvalho ◽  
R Esposito ◽  
J L Lebowitz ◽  
R Marra

PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 151-152
Author(s):  
Stephan Schwarz ◽  
Philipp Junker ◽  
Klaus Hackl

Author(s):  
Garrett M. Morris ◽  
David S. Goodsell ◽  
Robert S. Halliday ◽  
Ruth Huey ◽  
William E. Hart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document