nonlinear hardening
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Zhongqiang Zheng ◽  
Zhipeng Yao ◽  
Zongyu Chang ◽  
Tao Yao ◽  
Bo Liu

Point absorber wave energy converter is one of the most effective wave energy harness devices. Most of the wave energy converters generate energy by oscillating the floating body. Usually, the power-take-off system is simplified as a linear spring and a linear damper. However, the narrow frequency bandwidth around a particular resonant frequency is not suitable for real vibrations applications. Thus, a nonlinear hardening spring and a linear damper are applied in the power-take-off system. The bandwidth of hardening mechanism is discussed. The dynamic model of wave energy converter is built in regular waves with time domain method. The results show that the nonlinear wave energy converter has higher conversion efficiency than the linear wave energy converter more than the natural frequency state. The conversion efficiency of the nonlinear wave energy converter in the low frequency state is closed to the linear converter. The amplitude of the incident wave, the damping of the nonlinear wave energy converter and the nonlinear parameter [Formula: see text] affect the energy capture performance of the wave energy converter.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Shanpo Jia ◽  
Zhenyun Zhao ◽  
Guojun Wu ◽  
Bisheng Wu ◽  
Caoxuan Wen

This paper presents a new constitutive model for describing the strain-hardening and strain-softening behaviors of clayey rock. As the conventional Mohr-Coulomb (CMC) criterion has its limitation in the tensile shear region, a modified Mohr-Coulomb (MMC) criterion is proposed for clayey rock by considering the maximal tensile stress criterion. Based on the results of triaxial tests, a coupled elastoplastic damage (EPD) model, in which the elastic and plastic damage laws are introduced to describe the nonlinear hardening and softening behaviors, respectively, is developed so as to fully describe the mechanical behavior of clayey rock. Starting from the implicit Euler integration algorithm, the stress-strain constitutive relationships and their numerical formulations are deduced for finite element implementation in the commercial package ABAQUS where a user-defined material subroutine (UMAT) is provided for clayey rock. Finally, the proposed model is used to simulate the triaxial tests and the results validate the proposed model and numerical implementation.


Author(s):  
Emmanuel Gourdon ◽  
Alireza Ture Savadkoohi ◽  
Claude-Henri Lamarque

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yanxi Zhao ◽  
Zhongxian Liu

Soil-rock mixture is a kind of unfavorable geologic material, and it is composed of low-strength soil particles and high-stiffness rock blocks. Mechanical properties of soil-rock mixture were controlled by the internal mesoscopic medium, thus resulting in great difficulties of determination of mechanical parameters. In this paper, influences of rock content, mesoscopic features, and random distribution of mixture in soil-rock mixture on its shear strength were discussed through discrete element numerical simulation of the laboratory triaxial test. Results demonstrated that, with the increase of rock content, the internal friction angle of soil-rock mixture increased continuously, while the cohesion of soil-rock mixture decreased firstly and then increased. The stress-strain curve belonged to a nonlinear hardening type, which was close to soil characteristic. However, the shear strength was affected by mesoscopic medium of mixture particles significantly, resulting in the strong discreteness of strength, and only by large amounts of data statistics can we get a better regularity of strength. The research results can provide references to determine mechanical parameters of soil-rock mixture.


2017 ◽  
Vol 263 ◽  
pp. 326-331 ◽  
Author(s):  
L. Laurent ◽  
J.J. Yon ◽  
J.S. Moulet ◽  
P. Imperinetti ◽  
L. Duraffourg

2017 ◽  
Vol 114 (16) ◽  
pp. E3170-E3177 ◽  
Author(s):  
H. Samet Varol ◽  
Fanlong Meng ◽  
Babak Hosseinkhani ◽  
Christian Malm ◽  
Daniel Bonn ◽  
...  

Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently.


Author(s):  
Ludovic Laurent ◽  
Jean-Jacques Yon ◽  
Jean-Sebastien Moulet ◽  
Pierre Imperinetti ◽  
Laurent Duraffourg

Author(s):  
Keivan Asadi ◽  
Snehan Peshin ◽  
Junghoon Yeom ◽  
Hanna Cho

In micro/nanometer scale mechanical resonators, constructive utilization of intentional nonlinearity has suggested ways to leverage beneficial nonlinear characteristics in their design for various applications. Previous studies have also shown that the geometric nonlinearity is effectively implemented and tailored through integration of nonlinear couplings to an otherwise linear microcantilever. Here, we demonstrate experimentally a nonlinear micromechanical resonator consisting of a silicon microcantilever axially constrained by a polymer attachment exhibiting a strong nonlinear hardening behavior not only in its first flexural mode but also in higher modes. A theoretical model representing the system with geometrically nonlinear stiffness and damping is analyzed by the method of multiple scales, which is favorably validated by good agreement with experimentally obtained nonlinear responses.


Sign in / Sign up

Export Citation Format

Share Document