Numerical Simulations of a Ground Source Heat Pump System With Pile Heat Exchangers

Author(s):  
Masahito Oguma ◽  
Takeshi Matsumoto ◽  
Takao Kakizaki

Feasibility of a ground source heat pump (GSHP) system with pile heat exchangers for use in houses is evaluated through a numerical simulation. This GSHP system differs from ordinary borehole-type GSHP systems because short foundation piles installed at close intervals are used as heat exchangers. It is shown that the annual heat supply provided by this GSHP system is able to satisfy the demand of a house due to the air-source exchange at ground surface.

2014 ◽  
Vol 548-549 ◽  
pp. 595-600
Author(s):  
Can Can Zhang ◽  
Yue Jin Yu

In order to analyze the influence of groundwater flow on ground heat exchangers with different arrangements, with a project in Nanjing the access temperature field in the multi-borehole field was simulated after the ground source heat pump system had been performed for a year. Simulation results show that the access temperature is higher in the ground surrounding the borehole than the center of the corresponding borehole, thus forming a thermal barrier surrounding the borehole. Groundwater flow helps relieve temperature imbalance owing to the imbalance of heating and cooling load. The performance of the ground heat exchangers is better in staggered arrangement than in aligned arrangement. In the borehole field, the boreholes upstream have thermal interference on those downstream. And the extent of thermal interference depends on the direction of the groundwater flow when the locations of the boreholes are fixed in the borehole field.


2013 ◽  
Vol 827 ◽  
pp. 203-208
Author(s):  
Yang Zhang ◽  
Yong Feng Qi

Based on transient heat transfer theory and finite element method, a 3D finite element model was created to simulate the heat transfer of the vertical U type berried pipe of the ground source heat pump system. At the same time, the pipe algorithm applied successfully in the numerical simulation of concrete temperature field was introduced. The corresponding program was written. Taking the true experiment conditions as the input data and boundary condition of the computation model, the 3D dynamic simulation of the heat transfer between the berried pipe and sandy soil was carried out. The calculated temperatures of the output water of the pipe and the measure points in soil at different times met the experiment results very well, which verified the effectiveness and the reliability of the algorithm and the model. Beneficial exploration is made for providing more detailed and accurate data for the designer.


Sign in / Sign up

Export Citation Format

Share Document