Comparisons of Horizontal-Axis Wind Turbine Wake Interaction Models

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Jordan M. Wilson ◽  
Cole J. Davis ◽  
Subhas K. Venayagamoorthy ◽  
Paul R. Heyliger

In this study, Reynolds-averaged Navier–Stokes (RANS) simulations are performed using the k-ε and k-ω shear stress transport (SST) turbulence closure schemes to investigate the interactions of horizontal-axis wind turbine (HAWT) models in the neutrally stratified atmospheric boundary layer (ABL). A comparative study of actuator disk, actuator line, and full rotor models of the National Renewable Energy Laboratory (NREL) 5 MW reference turbine is presented. The open-source computational fluid dynamics (CFD) code openfoam 2.1.0 and the commercial software ansysfluent 13.0 are used for simulations. Single turbine models are analyzed for turbulent structures and wake resolution in the downstream region. To investigate the influence of the incident wind field on very large turbine blades, a high-resolution full rotor simulation is carried out for a single turbine to determine blade pressure distributions. Finally, simulations are performed for two inline turbines spaced 5 diameters (5D) apart. The research presented in this study provides an intercomparison of three dominant HAWT models operating at rated conditions in a neutral ABL using an RANS framework. Furthermore, the pressure distributions of the highly resolved full rotor model (FRM) will be useful for future aeroelastic structural analysis of anisotropic composite blade materials.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3124 ◽  
Author(s):  
Xiaodong Wang ◽  
Zhaoliang Ye ◽  
Shun Kang ◽  
Hui Hu

Wind turbines inevitably experience yawed flows, resulting in fluctuations of the angle of attack (AOA) of airfoils, which can considerably impact the aerodynamic characteristics of the turbine blades. In this paper, a horizontal-axis wind turbine (HAWT) was modeled using a structured grid with multiple blocks. Then, the aerodynamic characteristics of the wind turbine were investigated under static and dynamic yawed conditions using the Unsteady Reynolds Averaged Navier-Stokes (URANS) method. In addition, start-stop yawing rotations at two different velocities were studied. The results suggest that AOA fluctuation under yawing conditions is caused by two separate effects: blade advancing & retreating and upwind & downwind yawing. At a positive yaw angle, the blade advancing & retreating effect causes a maximum AOA at an azimuth angle of 0°. Moreover, the effect is more dominant in inboard airfoils compared to outboard airfoils. The upwind & downwind yawing effect occurs when the wind turbine experiences dynamic yawing motion. The effect increases the AOA when the blade is yawing upwind and vice versa. The phenomena become more dominant with the increase of yawing rate. The torque of the blade in the forward yawing condition is much higher than in backward yawing, owing to the reversal of the yaw velocity.


Author(s):  
M. Sergio Campobasso ◽  
Mohammad H. Baba-Ahmadi

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the harmonic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use of such an explicit approach in this context is discussed and resolved. The harmonic balance solver with low-speed preconditioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing the flow field past two sections of a wind turbine blade in yawed wind with both the time- and frequency-domain solvers. Results highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain counterpart, and with an accuracy comparable to that of the time-domain solver.


Sign in / Sign up

Export Citation Format

Share Document