Dynamic Instability of Laminated-Composite and Sandwich Plates Using a New Inverse Trigonometric Zigzag Theory

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Rosalin Sahoo ◽  
B. N. Singh

A structure with periodic dynamic load may lead to dynamic instability due to parametric resonance. In the present work, the dynamic stability analysis of laminated composite and sandwich plate due to in-plane periodic loads is studied based on recently developed inverse trigonometric zigzag theory (ITZZT). Transverse shear stress continuity at layer interfaces along with traction-free boundary conditions on the plate surfaces is satisfied by the model obviating the need of shear correction factor. An efficient C0 continuous, eight noded isoparametric element with seven field variable is employed for the dynamic stability analysis of laminated composite and sandwich plates. The boundaries of instability regions are determined using Bolotin's approach and the first instability zone is presented either in the nondimensional load amplitude–excitation frequency plane or load amplitude–load frequency plane. The influences of various parameters such as degrees of orthotropy, span-thickness ratios, boundary conditions, static load factors, and thickness ratios on the dynamic instability regions (DIRs) are studied by solving a number of problems. The evaluated results are validated with the available results in the literature based on different deformation theories. The efficiency of the present model is ascertained by the improved accuracy of predicted results at the cost of less computational involvement.

2008 ◽  
Vol 08 (01) ◽  
pp. 61-76 ◽  
Author(s):  
S. K. SAHU ◽  
A. V. ASHA

The present study deals with the dynamic stability of laminated composite pre-twisted cantilever panels. The effects of various parameters on the principal instability regions are studied using Bolotin's approach and finite element method. The first-order shear deformation theory is used to model the twisted curved panels, considering the effects of transverse shear deformation and rotary inertia. The results on the dynamic stability studies of the laminated composite pre-twisted panels suggest that the onset of instability occurs earlier and the width of dynamic instability regions increase with introduction of twist in the panel. The instability occurs later for square than rectangular twisted panels. The onset of instability occurs later for pre-twisted cylindrical panels than the flat panels due to addition of curvature. However, the spherical pre-twisted panels show small increase of nondimensional excitation frequency.


2011 ◽  
Vol 11 (02) ◽  
pp. 297-311 ◽  
Author(s):  
S. PRADYUMNA ◽  
ABHISHEK GUPTA

In this paper, the dynamic stability characteristics of laminated composite plates with piezoelectric layers subjected to periodic in-plane load are studied. The finite element method is employed using a modified first-order shear deformation plate theory (MFSDT). The formulation includes the effects of transverse shear, in-plane, and rotary inertia. The boundaries of dynamic instability regions are obtained using Bolotin's approach. The structural system is considered to be undamped. The correctness of the formulation is established by comparing the authors' results with those available in the published literature. The effects of control voltage, static buckling load parameter, number of stacking layers, and thickness of plate on the principal and second instability regions are investigated for cross-ply laminated composite plate.


2003 ◽  
Vol 03 (03) ◽  
pp. 391-403 ◽  
Author(s):  
A. K. L. Srivastava ◽  
P. K. Datta ◽  
A. H. Sheikh

This paper is concerned with the dynamic stability of stiffened plates with cutout subjected to harmonic in-plane edge loadings. The plate is modelled using the Mindlin–Reissner plate theory and the method of Hill's infinite determinants is applied to analyze the dynamic instability regions. Stiffened plates with cutout possessing different boundary conditions, aspect ratios, and cutout sizes considering and neglecting in-plane displacements have been analyzed for dynamic instability. The boundaries of the instability regions, including those of the principal one, are computed and presented graphically. These results are given in a non-dimensional form and illustrated by means of numerical examples.


Author(s):  
G. Patel ◽  
A. N. Nayak ◽  
A. K. L. Srivastava

The present paper reports an extensive study on dynamic instability characteristics of curved panels under linearly varying in-plane periodic loading employing finite element formulation with a quadratic isoparametric eight nodded element. At first, the influences of three types of linearly varying in-plane periodic edge loads (triangular, trapezoidal and uniform loads), three types of curved panels (cylindrical, spherical and hyperbolic) and six boundary conditions on excitation frequency and instability region are investigated. Further, the effects of varied parameters, such as shallowness parameter, span to thickness ratio, aspect ratio, and Poisson’s ratio, on the dynamic instability characteristics of curved panels with clamped–clamped–clamped–clamped (CCCC) and simply supported-free-simply supported-free (SFSF) boundary conditions under triangular load are studied. It is found that the above parameters influence significantly on the excitation frequency, at which the dynamic instability initiates, and the width of dynamic instability region (DIR). In addition, a comparative study is also made to find the influences of the various in-plane periodic loads, such as uniform, triangular, parabolic, patch and concentrated load, on the dynamic instability behavior of cylindrical, spherical and hyperbolic panels. Finally, typical design charts showing DIRs in non-dimensional forms are also developed to obtain the excitation frequency and instability region of various frequently used isotropic clamped spherical panels of any dimension, any type of linearly varying in-plane load and any isotropic material directly from these charts without the use of any commercially available finite element software or any developed complex model.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Liaojun Zhang ◽  
Tianxiao Ma ◽  
Hanyun Zhang ◽  
Dongsheng Chen

The instability of dams will bring immeasurable personal and property losses to the downstream, so it has always been a trendy topic worthy of investigation. Currently, the rigid body limit equilibrium method is the most commonly used method for the dynamic stability analysis of dams. However, under the action of earthquakes, the instability of the integral dam-foundation system threatens the safety of the dams and is of great concern. In this paper, a stability analysis method that can reflect the complex geological structural forms of dam foundations is proposed in this paper. The advantages are that this method deals with the difficulty in assuming sliding surfaces and the lack of quantitative criteria for the dynamic instability analysis of dams with complex geological structural forms of dam foundations. In addition, through the method, the sliding channels that may appear in the dam foundations can be automatically searched under random earthquake action, and the safety factors of the dynamic instability of dams be quantitatively obtained. Taking a high RCC gravity dam under construction in China as an example, the proposed method is applied to the three-dimensional finite element model of the dam-foundation system of this dam, and then the dynamic stability calculation is carried out. Through this method, the formation process of the dam foundation’s plastic zone and the failure of sliding channels with different strength reduction coefficients are studied on and analyzed detailedly, and the quantitative acquisition of the safety factors is realized. The results show that the method is reasonable and feasible, and helps provide a new idea and method for the dynamic stability analysis of dams.


2020 ◽  
Vol 33 (5) ◽  
pp. 04020060
Author(s):  
Nikhil Garg ◽  
Karkhanis Rahul Sanjay ◽  
Rosalin Sahoo ◽  
P. R. Maiti ◽  
B. N. Singh

Sign in / Sign up

Export Citation Format

Share Document