Control Rod Withdrawal Analysis of the Supercritical Water Reactor-Fuel Qualification Test Facility in the LVR-15 Research Reactor

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Csaba Maráczy ◽  
György Hegyi ◽  
István Trosztel ◽  
Emese Temesvári

The aim of the supercritical water reactor-fuel qualification test (SCWR-FQT) Euratom-China collaborative project is to design an experimental facility for qualification of fuel for the supercritical water-cooled reactor. The facility is intended to be operated in the LVR-15 research reactor in the Czech Republic. The pressure tube of the FQT facility encloses four fuel rods that will operate in similar conditions to the evaporator of the HPLWR reactor. This article deals with the three-dimensional (3D) coupled neutronic-thermohydraulic steady-state and transient analysis of LVR-15 with the fueled loop. Conservatively calculated enveloping parameters (e.g., reactivity coefficients) were determined for the safety analysis. The control rod withdrawal analysis of the FQT facility with and without reactor SCRAM was carried out with the KIKO3D-ATHLET-coupled dynamic code.

Author(s):  
Manuel Raqué ◽  
Thomas Schulenberg ◽  
Tobias Zeiger

The supercritical water reactor (SCWR) fuel qualification test is an in-pile test of a four-rod fuel assembly at supercritical pressure inside a research reactor, which is operated at atmospheric pressure. The risk of radioactive release from this new test facility should not exceed the accepted risk of the existing research reactor. A large number of safety analyses have been performed to assess this risk, which are summarized in this paper. Among them are studies of design basis accidents, assuming different failure modes of the high-pressure system, as well as an assessment of consequences of postulated accidents beyond the design basis. Results show that the safety objectives can be met.


Author(s):  
Mariana Ruzickova ◽  
Ales Vojacek ◽  
Thomas Schulenberg ◽  
Dirk C. Visser ◽  
Radek Novotny ◽  
...  

The supercritical water reactor (SCWR) is one of the six reactor concepts being investigated under the framework of the Generation IV International Forum (GIF). One of the major challenges in the development of a SCWR is to develop materials for the fuel and core structures that will be sufficiently corrosion resistant to withstand supercritical water conditions and to gain thermal-hydraulic experimental data that could be used for further improvement of heat transfer predictions in the supercritical region by numerical codes. Previously, core, reactor, and plant design concepts of the European high-performance light water reactor (HPLWR) have been worked out in great detail. As the next step, it has been proposed to carry out a fuel qualification test (FQT) of a small-scale fuel assembly in a research reactor under typical prototype conditions. Design and licensing of an experimental facility for the FQT, including the small-scale fuel assembly, the required coolant loop with supercritical water, and safety and auxiliary systems, was the scope of the recently concluded project “Supercritical Water Reactor–Fuel Qualification Test” (SCWR-FQT) described here. This project was a collaborative project cofunded by the European Commission, which took advantage of a Chinese–European collaboration, in which China offered an electrically heated out-of-pile loop for testing of fuel bundles. The design of the facility, especially of the test section with the fuel assembly, and the most important results of steady-state and safety analyses are presented. Material test results of the stainless steels considered for the fuel cladding are briefly summarized. Finally, important outcomes and lessons learned in the “Education and Training” and “Management” work packages are presented.


2014 ◽  
Vol 77 ◽  
pp. 381-389 ◽  
Author(s):  
M. Ruzickova ◽  
T. Schulenberg ◽  
D.C. Visser ◽  
R. Novotny ◽  
A. Kiss ◽  
...  

Author(s):  
M. Sharabi ◽  
W. Ambrosini ◽  
S. He ◽  
Pei-Xue Jiang ◽  
Chen-Ru Zhao

The paper describes the application of computational fluid dynamics (CFD) in simulating density wave oscillations in triangular and square pitch rod bundles. The FLUENT code is used for this purpose, addressing typical conditions proposed for supercritical water reactor (SCWR) conceptual design. The RELAP5 code and an in-house 1D linear stability code are also adopted to compare the results for instability thresholds obtained by different techniques. Transient analyses are performed both by the CFD code and RELAP5, with increasing heating rates and constant pressure drop across the channel, up to the occurrence of unstable behavior. The obtained results confirm that the density wave mechanism is similar in rod bundle and in axisymmetric configurations.


2021 ◽  
Vol 7 (4) ◽  
pp. 311-318
Author(s):  
Artavazd M. Sujyan ◽  
Viktor I. Deev ◽  
Vladimir S. Kharitonov

The paper presents a review of modern studies on the potential types of coolant flow instabilities in the supercritical water reactor core. These instabilities have a negative impact on the operational safety of nuclear power plants. Despite the impressive number of computational works devoted to this topic, there still remain unresolved problems. The main disadvantages of the models are associated with the use of one simulated channel instead of a system of two or more parallel channels, the lack consideration for neutronic feedbacks, and the problem of choosing the design ratios for the heat transfer coefficient and hydraulic resistance coefficient under conditions of supercritical water flow. For this reason, it was decided to conduct an analysis that will make it possible to highlight the indicated problems and, on their basis, to formulate general requirements for a model of a nuclear reactor with a light-water supercritical pressure coolant. Consideration is also given to the features of the coolant flow stability in the supercritical water reactor core. In conclusion, the authors note the importance of further computational work using complex models of neutronic thermal-hydraulic stability built on the basis of modern achievements in the field of neutron physics and thermal physics.


Sign in / Sign up

Export Citation Format

Share Document