scholarly journals Trajectory Planning for Micromanipulation With a Nonredundant Digital Microrobot: Shortest Path Algorithm Optimization With a Hypercube Graph Representation

2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Vincent Chalvet ◽  
Yassine Haddab ◽  
Philippe Lutz

Microrobotics is an ongoing study all over the world for which design is often inspired from macroscale robots. We have proposed the design of a new kind of microfabricated microrobot based on the use of binary actuators in order to generate a highly accurate and repeatable tool for positioning tasks at microscale without any sensor (with open-loop control). Our previous work consisted in the design, modeling, fabrication, and characterization of the first planar digital microrobot. In this paper, we focus on the motion planning of this robot for micromanipulation tasks. The complex motion pattern of this robot requires the use of algorithms. Graph theory is well suited for the discrete workspace generated by this robot. The comparison between several well-known trajectory-planning algorithms is done. A new graphical representation, named the hypercubic graph, is used for improving the computation speed of the algorithm. This is particularly useful for large workspace robots.

Author(s):  
Alan Whitman ◽  
Garrett Clayton ◽  
Alexander Poultney ◽  
Hashem Ashrafiuon

A novel open-loop control method is presented for mobile robots based on an asymptotic inverse dynamic solution and trajectory planning. The method is based on quantification of sliding by a small nondimensional parameter. Asymptotic expansion of the equations yields the dominant nonslip solution along with a first-order correction for sliding. A trajectory planning is then introduced based on transitional circles between the robot initial states and target reference trajectory. The transitional trajectory ensures smooth convergence of the robot states to the target reference trajectory, which is essential for open-loop control. Experimental results with a differential drive mobile robot demonstrate the significant improvement of the controller performance when the first-order correction is included.


2006 ◽  
Vol 39 (15) ◽  
pp. 592-597 ◽  
Author(s):  
Filoktimon Repoulias ◽  
Evangelos Papadopoulos

1998 ◽  
Author(s):  
C. Truman ◽  
Lenore McMackin ◽  
Robert Pierson ◽  
Kenneth Bishop ◽  
Ellen Chen

2008 ◽  
Author(s):  
Thomas Bifano ◽  
Jason Stewart ◽  
Alioune Diouf

2011 ◽  
Vol 418-420 ◽  
pp. 1865-1868
Author(s):  
Ming Jin Yang ◽  
Xi Wen Li ◽  
Zhi Gang Wang ◽  
Tie Lin Shi

The performance of speed regulating is very important to the mixing process with safe, efficient operation and high quality of production. Strategies and practices of responses and optimization of a PID-based speed regulating system of a planetary mixer were presented in this paper. Research results show that: by means of the signal constraint function presented by Simulink Response Optimization, optimization PID parameters of the 2-DOF-PID controller can be obtained, and the response of close-loop control system has quite good performance of overshoot, response time, and stability compared with an open-loop control system.


2002 ◽  
Vol 21 (10-11) ◽  
pp. 849-859 ◽  
Author(s):  
Kenneth A. Mcisaac ◽  
James P. Ostrowski

In this paper, we describe experimental work using an underwater, biomimetic, eel-like robot to verify a simplified dynamic model and open-loop control routines. We compare experimental results to previous analytically derived, but approximate expressions for proposed gaits for forward/backward swimming, circular swimming, sideways swimming and turning in place. We have developed a five-link, underwater eel-like robot, focusing on modularity, reliability and rapid prototyping, to verify our theoretical predictions. Results from open-loop experiments performed with this robot in an aquatic environment using an off-line vision system for position sensing show good agreement with theory.


Sign in / Sign up

Export Citation Format

Share Document