Enhanced Flow Boiling of Ethanol in Open Microchannels With Tapered Manifolds in a Gravity-Driven Flow

2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Philipp Buchling ◽  
Satish Kandlikar

There is a clear need for cooling high heat flux generating electronic devices using a dielectric fluid without using a pump. This paper explores the feasibility of employing ethanol as a dielectric fluid in a horizontal, open microchannel heat sink configuration with a tapered gap manifold to yield very low pressure head requirements. The paper presents experimental results for such a system utilizing ethanol as a working fluid under gravity-driven flow. A heat flux of 217 W/cm2 was dissipated with a pressure drop of only 9 kPa. The paper further presents parametric trends regarding flow rate and pressure drop characteristics that provide basic insight into designing high heat flux systems under a given gravity head requirement. Based on the results, interrelationships and design guidelines are developed for the taper, ethanol flow rate and imposed heat flux on heat transfer coefficient and gravity head requirement for electronics cooling. Reducing flow instability, reducing pressure drop, and enhancing heat transfer performance for a dielectric fluid will enable the development of pumpless cooling solutions in a variety of electronics cooling applications.

Author(s):  
Philipp K. Buchling ◽  
Satish G. Kandlikar

Flow boiling in microchannel heat sinks has been studied extensively in the past decade with the aim of implementation in the cooling of high-power integrated circuit chips. It has the potential to provide high-heat flux cooling at low wall superheats and a compact heater surface geometry. Prior works using water as the working fluid have shown that open microchannels with tapered manifolds deliver enhanced flow boiling performance, with substantial improvements in flow stability and a low pressure drop. The present work investigates the use of ethanol in flow boiling via a gravity-driven flow loop, eliminating the need for a pump. The flow boiling performance, critical heat flux (CHF) behavior, and pressure drop characteristics of ethanol in open microchannels with tapered gap manifolds (OMM) are studied. Several microchannel chips with different manifold gap heights and channel geometries are tested at multiple flow rates. The performance of ethanol in the present work was found to exceed all previously published results with ethanol, with a record maximum heat flux of 217 W/cm2 at a wall superheat of 34°C. Thanks to a remarkably low pressure drop, with maximal values below 9 kPa, ethanol is identified as a suitable dielectric fluid for reaching high heat flux goals in a gravity-driven configuration investigated in this study.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


2006 ◽  
Vol 129 (3) ◽  
pp. 247-255 ◽  
Author(s):  
X. L. Xie ◽  
W. Q. Tao ◽  
Y. L. He

With the rapid development of the Information Technology (IT) industry, the heat flux in integrated circuit (IC) chips cooled by air has almost reached its limit at about 100W∕cm2. Some applications in high technology industries require heat fluxes well beyond such a limitation. Therefore, the search for a more efficient cooling technology becomes one of the bottleneck problems of the further development of the IT industry. The microchannel flow geometry offers a large surface area of heat transfer and a high convective heat transfer coefficient. However, it has been hard to implement because of its very high pressure head required to pump the coolant fluid through the channels. A normal channel size could not give high heat flux, although the pressure drop is very small. A minichannel can be used in a heat sink with quite a high heat flux and a mild pressure loss. A minichannel heat sink with bottom size of 20mm×20mm is analyzed numerically for the single-phase turbulent flow of water as a coolant through small hydraulic diameters. A constant heat flux boundary condition is assumed. The effect of channel dimensions, channel wall thickness, bottom thickness, and inlet velocity on the pressure drop, temperature difference, and maximum allowable heat flux are presented. The results indicate that a narrow and deep channel with thin bottom thickness and relatively thin channel wall thickness results in improved heat transfer performance with a relatively high but acceptable pressure drop. A nearly optimized structure of heat sink is found that can cool a chip with heat flux of 350W∕cm2 at a pumping power of 0.314W.


Author(s):  
Satish G. Kandlikar

Research efforts on flow boiling in microchannels were focused on stabilizing the flow during the early part of the last decade. After achieving that goal through inlet restrictors and distributed nucleation sites, the focus has now shifted on improving its performance for high heat flux dissipation. The recent worldwide efforts described in this paper are aimed at increasing the critical heat flux (CHF) while keeping the pressure drop low, with an implicit goal of dissipating 1 kW/cm2 for meeting the high-end target in electronics cooling application. The underlying mechanisms in these studies are identified and critically evaluated for their potential in meeting the high heat flux dissipation goals. Future need to simultaneously increase the CHF and the heat transfer coefficient (HTC) has been identified and hierarchical integration of nanoscale and microscale technologies is deemed necessary for developing integrated pathways toward meeting this objective.


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Yiding Cao ◽  
Mingcong Gao

This paper conducts experimental and analytical studies of a novel heat-transfer device, reciprocating-mechanism driven heat loop (RMDHL) that facilitates two-phase heat transfer while eliminating the so-called cavitation problem commonly encountered by a conventional pump. A RMDHL normally includes a hollow loop having an interior flow passage, an amount of working fluid filled within the loop, and a reciprocating driver. The hollow loop has an evaporator section, a condenser section, and a liquid reservoir. The reciprocating driver is integrated with the liquid reservoir and facilitates a reciprocating flow of the working fluid within the loop, so that liquid is supplied from the condenser section to the evaporator section under a substantially saturated condition and the so-called cavitation problem associated with a conventional pump is avoided. The reciprocating driver could be a solenoid-operated reciprocating driver for electronics cooling applications and a bellows-type reciprocating driver for high-temperature applications. Experimental study has been undertaken for a solenoid-operated heat loop in connection with high heat flux thermal management applications. Experimental results show that the heat loop worked very effectively and a heat flux as high as 300W∕cm2 in the evaporator section could be handled. A working criterion has also been derived, which could provide a guidance for the design of a RMDHL.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Satish G. Kandlikar

Research efforts on flow boiling in microchannels were focused on stabilizing the flow during the early part of the last decade. After achieving that goal through inlet restrictors and distributed nucleation sites, the focus has now shifted on improving its performance for high heat flux dissipation. The recent worldwide efforts described in this paper are aimed at increasing the critical heat flux (CHF) and reducing the pressure drop, with an implicit goal of dissipating 1 kW/cm2 for meeting the high-end target in electronics cooling application. The underlying mechanisms in these studies are identified and critically evaluated for their potential in meeting the high heat flux dissipation goals. Future need to simultaneously increase the CHF and the heat transfer coefficient (HTC) has been identified and hierarchical integration of nanoscale and microscale technologies is deemed necessary for developing integrated pathways toward meeting this objective.


Sign in / Sign up

Export Citation Format

Share Document