heated channel
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Mayank Verma ◽  
Ashoke De

Abstract The paper presents the comparative study of the vortex-induced cooling of a heated channel for the four different cross-sections of the rigid cylinder, i.e., circular, square, semi-circular, and triangular, with or without the rigid/flexible splitter plate at the Reynolds number (based on the hydraulic diameter) of 200. The study presents a comprehensive analysis of the flow and thermal performance for all the cases. For flexible plate cases, a partitioned approach is invoked to solve the coupled fluid-structure-convection problem. The simulations show the reduction in the thermal boundary layer thickness at the locations of the vortices resulting in the improved Nusselt number. Further, the thin plate's flow-induced motion significantly increases the vorticity field inside the channel, resulting in improved mixing and cooling. It is observed that the plate-motion amplitude is maximum when the plate is attached to the cylinder with the triangular cross-section. The power requirement analysis shows that the flexible plate reduces the power required to pump the channel's cold fluid. Thus, based on the observations of the present study, the authors recommend using the flexible plate attached to the cylinder for improved convective cooling.


2021 ◽  
pp. 65-98
Author(s):  
Neil E. Todreas ◽  
Mujid S. Kazimi ◽  
Mahmoud Massoud

2021 ◽  
Vol 382 ◽  
pp. 111397
Author(s):  
Nitesh Dutt ◽  
Pradeep Kumar Sahoo ◽  
Onkar S. Gokhale ◽  
Deb Mukhopadhyay

2021 ◽  
Author(s):  
Derek Roeleveld

A simplified model was developed to predict the radiative and convective heat transfer in complex fenestration systems, including the effect of solar radiation. The focus of the current work was on Venetian blinds mounted adjacent to the indoor window surface. From the perspective of convection, the model used a convective flat plate flow between the blind and ambient surroundings and a convective channel flow between the window and blinds. It was necessary to develop new empirical correlations to predict the average channel Nusslet numbers of the hot and cold walls separately. Therefore, a CFG study of free convection in an asymmetrically heated channel was performed. Then, the new empirical correlations were used to develop a simplified one-dimensional model of the heat transfer in the system. The radiative heat exchange between the blind, window and room was calculated using a four surface grey-diffuse model. Sample predicted results were compared with existing experimental and numerical data from the literature.


2021 ◽  
Author(s):  
Derek Roeleveld

A simplified model was developed to predict the radiative and convective heat transfer in complex fenestration systems, including the effect of solar radiation. The focus of the current work was on Venetian blinds mounted adjacent to the indoor window surface. From the perspective of convection, the model used a convective flat plate flow between the blind and ambient surroundings and a convective channel flow between the window and blinds. It was necessary to develop new empirical correlations to predict the average channel Nusslet numbers of the hot and cold walls separately. Therefore, a CFG study of free convection in an asymmetrically heated channel was performed. Then, the new empirical correlations were used to develop a simplified one-dimensional model of the heat transfer in the system. The radiative heat exchange between the blind, window and room was calculated using a four surface grey-diffuse model. Sample predicted results were compared with existing experimental and numerical data from the literature.


2021 ◽  
Author(s):  
David Naylor ◽  
Seyed Sepehr Mohaddes Foroushani ◽  
John L. Wright

The computation of forced-convective heat transfer from the walls of an asymmetrically heated channel to the fluid passing through in a laminar, hydrodynamically-developed flow is known as the asymmetric Graetz problem. Several analytical and numerical solutions for this problem have been published and many variations and extensions have been investigated. Recently, there has been a renewed interest in this problem due to its applications in emerging areas such as microchannels and fuel cells. In the present work, the asymmetric Graetz problem is examined in a resistor-network framework. The formulation of the problem in terms of three convective resistances leads to temperature-independent Nusselt numbers that are free of the singularities found in previous results. The proposed approach also offers more detail regarding the split of heat transfer between the channel walls and the flow. This work is part of an ongoing project on resistor-network modeling and characterization of multi-temperature convection problems.


Sign in / Sign up

Export Citation Format

Share Document