Numerical Solution of Unsteady Conduction Heat Transfer in Anisotropic Cylinders

Author(s):  
Aslib Imane ◽  
Hamza Hamid ◽  
Lahjomri Jawad ◽  
Zniber Khalid ◽  
Oubarra Abdelaziz

This paper investigates a numerical solution of 2D transient heat conduction in an anisotropic cylinder, subjected to a prescribed temperature over the two end sections and a convective boundary condition over the whole lateral surface. The analysis of this anisotropic heat conduction problem is tedious because the corresponding partial differential equation contains a mixed-derivative. In order to overcome this difficulty, a linear coordinate transformation is used to reduce the anisotropic cylinder heat conduction problem to an equivalent isotropic one, without complicating the boundary conditions but with a more complicated geometry. The alternating-direction implicit finite-difference method (ADI) is used to integrate the isotropic equation combined with boundary conditions. Inverse transformation provides profile temperature in the anisotropic cylinder for full-field configuration. The numerical code is validated by the analytical heat conduction solutions available in the literature such as transient isotropic solution and steady-state orthotropic solution. The aim of this paper is to study the effect of cross-conductivity on the temperature profile inside an axisymmetrical anisotropic cylinder versus time, radial Biot number (Bir), and principal conductivities. The results show that cross-conductivity promotes the effect of Bir according to the principal conductivities. Furthermore, the anisotropy increases the time required to achieve the steady-state heat conduction.

Sign in / Sign up

Export Citation Format

Share Document