scholarly journals Extension of Manufacturing System Design Decomposition to Implement Manufacturing Systems That are Sustainable

Author(s):  
David S. Cochran ◽  
Steve Hendricks ◽  
Jason Barnes ◽  
Zhuming Bi

This paper offers an extension of axiomatic design theory to ensure that leaders, managers, and engineers can sustain manufacturing systems throughout the product lifecycle. The paper has three objectives: to provide a methodology for designing and implementing manufacturing systems to be sustainable in the context of the enterprise, to define the use of performance metrics and investment criteria that sustain manufacturing, and to provide a systems engineering approach that enables continuous improvement (CI) and adaptability to change. The systems engineering methodology developed in this paper seeks to replace the use of the word “lean” to describe the result of manufacturing system design. Current research indicates that within three years of launch, ninety percent of “lean implementations” fail. This paper provides a methodology that leaders, managers, and engineers may use to sustain their manufacturing system design and implementation.

Author(s):  
S. J. Pavnaskar ◽  
D. Weaver ◽  
J. K. Gershenson

Lean has become a “must-use” philosophy for businesses today. Lean manufacturing focuses on the elimination of waste in manufacturing operations. Similarly, companies have started using lean engineering to eliminate wastes from their engineering processes. Both lean manufacturing and lean engineering yield dramatic improvements in quality, cost, and delivery. However, the philosophy of lean (manufacturing and engineering) revolves around the continuous improvement of existing processes. Costs associated with continuous improvement can be significantly reduced by incorporating “lean” considerations when designing a product, process, or manufacturing system. This is known as design for lean manufacturing (DfLM). DfLM guides the design of a product, process, or a manufacturing system to enable lean operations when in production, just as design for assembly (DFA) guides the design of a product to allow easier assembly during production. Currently, there are no guidelines that would help a product or process designer in considering to lean operations during design. Note that usage of the word “product” in this paper must be interpreted in a literary sense and not as a “widget.” The “product” of a manufacturing engineering process is a complete manufacturing system. In this paper, we consider manufacturing system design and propose a novel set of structured DfLM guidelines for designing a manufacturing system. These guidelines will be a valuable resource for manufacturing engineers to guide manufacturing system design for new products to enable lean operations once the system is in production. DfLM guidelines for system design also will help plant engineers and rapid continuous improvement managers to assess existing manufacturing systems and identify and prioritize improvement efforts. The proposed DfLM guidelines are then validated for accuracy, completeness, and redundancy by using them to evaluate an existing benchmark manufacturing system. The initial DfLM guidelines show promise for use in designing manufacturing systems that are easy to manage, flexible, safe, build quality into the products, optimize material flow, fully utilize all resources, maximize throughput, and continuously produce what the customer wants just in time. Similar guidelines can be proposed for product and process design to further enhance the efficiency of operations and reduce the overhead of continuous improvement efforts.


Author(s):  
J. T. Black ◽  
David S. Cochran

AND THE WORLD CAME TO SEE. When a new manufacturing system design (MSD) is developed by a company or a group of companies, the rest of the world comes to those factories to learn about the new system. In the last 200 years, three new factory designs have evolved, called the job shop, the flow shop and the lean shop. Each is based on a new system design — a functional design, a product flow design and a linked cell design. New factory designs lead to new industrial leaders and even new industrial revolutions (IR’s). Two appendixes are included: One outlines the implementation strategy for the lean shop and the other is a discussion of lean manufacturing from the viewpoint of K. Hitomi, Japanese professor of manufacturing systems engineering.


2003 ◽  
Vol 02 (01) ◽  
pp. 71-87 ◽  
Author(s):  
A. OYARBIDE ◽  
T. S. BAINES ◽  
J. M. KAY ◽  
J. LADBROOK

Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility.


Author(s):  
Johan Vallhagen

Abstract This paper addresses some limitations of the axiomatic design theory (AD) when designing complex products and matching manufacturing systems. The conclusion is that, for complex manufacturing systems, this cannot be done in such a straightforward way as described in literature. The original method is best used for manufacturing of parts only, i.e. to find the appropriate process variables (PVs). In the case of complex manufacturing systems, a one-to-one mapping between physical domain and process domain is not possible since not all design parameters (DP) are components. Therefore, an additional process requirement domain (PR), proposed earlier, has been used. With it, the components are extracted from the DP hierarchy and mapped to different spaces in the manufacturing world. In these spaces, PRs and PVs are selected when designing the manufacturing system. An example is given to show the deficiencies and how to use the suggested modifications.


Sign in / Sign up

Export Citation Format

Share Document