Influence of Uniform Blowing/Suction on the Free Convection of Non-Newtonian Fluids Over a Vertical Cone in Porous Media With Thermal Radiation and Soret/Dufour Effects: Uniform Wall Temperature/Uniform Wall Concentration

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Chuo-Jeng Huang

This work studies numerically the combined heat and mass transfer of uniform blowing/suction, non-Newtonian power-law fluid, and thermal radiation effects on free convection adjacent to a vertical cone within a porous medium in the presence of Soret/Dufour effects. The surface of the vertical cone has a uniform wall temperature and uniform wall concentration (UWT/UWC). The Rosseland diffusion approximation is employed to describe the radiative heat flux. A nonsimilarity analysis is performed, and the transformed governing equations are solved by Keller box method (KBM). The effects of these major parameters of the Dufour parameter, Soret parameter, Lewis number, buoyancy ratio, power-law index of the non-Newtonian fluids, blowing/suction parameter, and thermal radiation parameter on the heat and mass transfer characteristics have been carried out. In general, for the case of blowing, both the local Nusselt number and the local Sherwood number decrease. This trend reversed for suction of fluid. The physical aspects of the problem are discussed in detail.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Das ◽  
A.S. Banu ◽  
R.N. Jana

Purpose In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous problems that cannot be enlightened by uniform wall temperature. To explore such physical phenomena researchers incorporate non-uniform or ramped temperature conditions at the boundary, the purpose of this paper is to achieve the closed-form solution of a time-dependent magnetohydrodynamic (MHD) boundary layer flow with heat and mass transfer of an electrically conducting non-Newtonian Casson fluid toward an infinite vertical plate subject to the ramped temperature and concentration (RTC). The consequences of chemical reaction in the mass equation and thermal radiation in the energy equation are encompassed in this analysis. The flow regime manifests with pertinent physical impacts of the magnetic field, thermal radiation, chemical reaction and heat generation/absorption. A first-order chemical reaction that is proportional to the concentration itself directly is assumed. The Rosseland approximation is adopted to describe the radiative heat flux in the energy equation. Design/methodology/approach The problem is formulated in terms of partial differential equations with the appropriate physical initial and boundary conditions. To make the governing equations dimensionless, some suitable non-dimensional variables are introduced. The resulting non-dimensional equations are solved analytically by applying the Laplace transform method. The mathematical expressions for skin friction, Nusselt number and Sherwood number are calculated and expressed in closed form. Impacts of various associated physical parameters on the pertinent flow quantities, namely, velocity, temperature and concentration profiles, skin friction, Nusselt number and Sherwood number, are demonstrated and analyzed via graphs and tables. Findings Graphical analysis reveals that the boundary layer flow and heat and mass transfer attributes are significantly varied for the embedded physical parameters in the case of constant temperature and concentration (CTC) as compared to RTC. It is worthy to note that the fluid velocity is high with CTC and lower for RTC. Also, the fluid velocity declines with the augmentation of the magnetic parameter. Moreover, growth in thermal radiation leads to a declination in the temperature profile. Practical implications The proposed model has relevance in numerous engineering and technical procedures including industries related to polymers, area of chemical productions, nuclear energy, electronics and aerodynamics. Encouraged by such applications, the present work is undertaken. Originality/value Literature review unveils that sundry studies have been carried out in the presence of uniform wall temperature. Few studies have been conducted by considering non-uniform or ramped wall temperature and concentration. The authors are focused on an analytical investigation of an unsteady MHD boundary layer flow with heat and mass transfer of non-Newtonian Casson fluid past a moving plate subject to the RTC at the plate. Based on the authors’ knowledge, the present study has, so far, not appeared in scientific communications. Obtained analytical solutions are verified by considering particular cases of the published works.


2020 ◽  
Vol 12 (3) ◽  
pp. 376-387 ◽  
Author(s):  
M. Veera Krishna ◽  
N. Ameer Ahmed ◽  
Ali J. Chamkha

We analyze the impact of suction/injection on MHD convective oscillatory flow of second grade fluid through a Porous Medium in a vertical channel with non-uniform wall temperature. The liquid is occupied with a transverse Magnetic field and the velocity slip at the left plate is taken into consideration. The precise solutions of the dimensionless equations are obtained and the effects of the flow parameters on velocity, temperature and concentration profiles, skin friction and rates of heat and mass transfer are discussed. It is fascinating to take note of that skin friction increases on together channel plates as permeability increases.


Sign in / Sign up

Export Citation Format

Share Document