Combining RAVEN, RELAP5-3D, and PHISICS for Fuel Cycle and Core Design Analysis for New Cladding Criteria

2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrea Alfonsi ◽  
George L. Mesina ◽  
Angelo Zoino ◽  
Nolan Anderson ◽  
Cristian Rabiti

The Nuclear Regulatory Commission (NRC) has considered revision of 10-CFR-50.46C rule (Borchard and Johnson, 2013, “10 CFR 50.46c Rulemaking: Request to Defer Draft Guidance and Extension Request for Final Rule and Final Guidance,” U.S. Nuclear Regulatory Commission, Washington, DC.) to account for burn-up rate effects in future analysis of reactor accident scenarios so that safety margins may evolve as dynamic limits with reactor operation and reloading. To find these limiting conditions, both cladding oxidation and maximum temperature must be cast as functions of fuel exposure. To run a plant model through a long operational transient to fuel reload is computationally intensive, and this must be repeated for each reload until the time of the accident scenario. Moreover for probabilistic risk assessment (PRA), this must be done for many different fuel reload patterns. To perform such new analyses in a reasonable amount of computational time with good accuracy, Idaho National Laboratory (INL) has developed new multiphysics tools by combining existing codes and adding new capabilities. The parallel highly innovative simulation INL code system (PHISICS) toolkit (Rabiti et al., 2016, “New Simulation Schemes and Capabilities for the PHISICS/RELAP5-3D Coupled Suite,” Nucl. Sci. Eng., 182(1), pp. 104–118; Alfonsi et al., 2012, “PHISICS Toolkit: Multi-Reactor Transmutation Analysis Utility—MRTAU,” PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education, Knoxville, TN, Apr. 15–20.) for neutronic and reactor physics is coupled with the reactor excursion and leak analysis program—three-dimensional (RELAP5-3D) (The RELAP5-3D© Code Development Team, 2014, “RELAP5-3D© Code Manual Volume I: Code Structure, System Models, and Solution Methods,” Rev. 4.2, Idaho National Laboratory, Idaho Falls, ID, Technical Report No. INEEL-EXT-98-00834.) for the loss of coolant accident (LOCA) analysis and reactor analysis and virtual-control environment (RAVEN) (Alfonsi et al., 2013, “RAVEN as a Tool for Dynamic Probabilistic Risk Assessment: Software Overview,” 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID, May 5–9, pp. 1247–1261.) for the probabilistic risk assessment (PRA) and margin characterization analysis. For RELAP5-3D to process a single sequence of cores in a continuous run required a sequence of restarting input decks, each with different neutronics or thermal-hydraulic (TH) flow region and culminating in an accident scenario. A new multideck input processing capability was developed and verified for this analysis. The combined RAVEN/PHISICS/RELAP5-3D tool is used to analyze a typical pressurized water reactor (PWR).

Author(s):  
Dave Grabaskas ◽  
Acacia J. Brunett ◽  
Matthew Bucknor

GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of a reliability database (RDB) methodology to determine applicable reliability data for inclusion in the quantification of the PRA. The RDB method developed during this project seeks to satisfy the requirements of the Data Analysis element of the ASME/ANS Non-LWR PRA standard. The RDB methodology utilizes a relevancy test to examine reliability data and determine whether it is appropriate to include as part of the reliability database for the PRA. The relevancy test compares three component properties to establish the level of similarity to components examined as part of the PRA. These properties include the component function, the component failure modes, and the environment/boundary conditions of the component. The relevancy test is used to gauge the quality of data found in a variety of sources, such as advanced reactor-specific databases, non-advanced reactor nuclear databases, and non-nuclear databases. The RDB also establishes the integration of expert judgment or separate reliability analysis with past reliability data. This paper provides details on the RDB methodology, and includes an example application of the RDB methodology for determining the reliability of the intermediate heat exchanger of a sodium fast reactor. The example explores a variety of reliability data sources, and assesses their applicability for the PRA of interest through the use of the relevancy test.


Author(s):  
Andrea Alfonsi ◽  
George L. Mesina ◽  
Angelo Zoino ◽  
Cristian Rabiti

The Nuclear Regulatory Commission (NRC) has considered revising the 10 CFR 50.46C rule [1] for analyzing reactor accident scenarios to take the effects of burn-up rate into account. Both maximum temperature and oxidation of the cladding must be cast as functions of fuel exposure in order to find limiting conditions, making safety margins dynamic limits that evolve with the operation and reloading of the reactor. In order to perform such new analysis in a reasonable computational time with good accuracy, INL (Idaho National Laboratory) has developed new multi-physics tools by combining existing codes and adding new capabilities. The PHISICS (Parallel Highly Innovative Simulation INL Code System) toolkit [2,3] for neutronic and reactor physics is coupled with RELAP5-3D [4] (Reactor Excursion and Leak Analysis Program) for the LOCA (Loss of Coolant Accident) analysis and RAVEN [5] for the PRA (Probabilistic Risk Assessment) and margin characterization analysis. In order to perform this analysis, the sequence of RELAP5-3D input models had to get executed in a sequence of multiple input decks, each of them had to restart and slightly modify the previous model (in this case, on the neutronic side only) This new RELAP5-3D multi-deck processing capability has application to parameter studies and uncertainty quantification. The combined RAVEN/PHISICS/RELAP5-3D tool is used to analyze a typical PWR (Pressurized Water Reactor).


Author(s):  
Curtis Smith

A key area of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) use is in the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMR systems starting in the design process through the operation phase. Recently, the Idaho National Laboratory (INL) set out to develop quantitative methods and tools and the associated analysis framework for assessing a variety of SMR risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. INL has proposed an approach to expand and advance the state-of-the-practice in PRA. Specifically we will develop a framework for applying modern computational tools to create advanced risk-based methods for identifying design vulnerabilities in SMRs. This framework will require the fusion of state-of-the-art PRA methods, advanced 3D visualization methods, and highperformance optimization. The approach has several defining attributes focused within three general areas: 1. Models – A single 3D representation of all key systems, structures, and components (SSCs) will be defined for a particular facility. We will be able to simulate — by understanding how each SSC interacts with other parts of the facility — the hazard-induced susceptibilities of each SSC. 2. Phenomena – An approach to effectively representing hazards and their effect on physical behavior at a facility will need to be determined. In many cases, multiple models of a specific phenomenon may be available, but this ensemble of models will need to be intelligently managed. 3. Integration – Any advanced risk-informed decision support approach will rely on a variety of probabilistic and mechanistic information. The safety, security, and economic drivers will need to be integrated in order to determine the effectiveness of proposed mitigation strategies. We will need to be able to manage all (important) hazards for all (important) scenarios all of the time the facility is in operation. The focus of the paper will be on discussing the features of the proposed advanced SMR PRA Framework and providing an status update of the development activities.


2014 ◽  
Author(s):  
Paul Kennedy ◽  
Brian K. Flemming ◽  
David G. Devoy ◽  
Daniel F. Huantes ◽  
Matthew D. Flowers

Sign in / Sign up

Export Citation Format

Share Document