scholarly journals Mining Process Heuristics From Designer Action Data via Hidden Markov Models

2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Configuration design problems, characterized by the assembly of components into a final desired solution, are common in engineering design. Various theoretical approaches have been offered for solving configuration type problems, but few studies have examined the approach that humans naturally use to solve such problems. This work applies data-mining techniques to quantitatively study the processes that designers use to solve configuration design problems. The guiding goal is to extract beneficial design process heuristics that are generalizable to the entire class of problems. The extraction of these human problem-solving heuristics is automated through the application of hidden Markov models to the data from two behavioral studies. Results show that designers proceed through four procedural states in solving configuration design problems, roughly transitioning from topology design to shape and parameter design. High-performing designers are distinguished by their opportunistic tuning of parameters early in the process, enabling a more effective and nuanced search for solutions.

2018 ◽  
Author(s):  
Christopher McComb ◽  
Kenneth Kotovsky ◽  
Jonathan Cagan

Configuration design problems, characterized by the assembly of components into a final desired solution, are common in engineering design. Various theoretical approaches have been offered for solving configuration type problems, but few studies have examined the approach that humans naturally use to solve such problems. This work applies data-mining techniques to quantitatively study the processes that designers use to solve configuration design problems. The guiding goal is to extract beneficial design process heuristics that are generalizable to the entire class of problems. The extraction of these human problem-solving heuristics is automated through the application of hidden Markov models to the data from two behavioral studies. Results show that designers proceed through four procedural states in solving configuration design problems, roughly transitioning from topology design to shape and parameter design. High-performing designers are distinguished by their opportunistic tuning of parameters early in the process, enabling a more effective and nuanced search for solutions.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Configuration design problems, characterized by the selection and assembly of components into a final desired solution, are common in engineering design. Although a variety of theoretical approaches to solving configuration design problems have been developed, little research has been conducted to observe how humans naturally attempt to solve such problems. This work mines the data from a cognitive study of configuration design to extract helpful design heuristics. The extraction of these heuristics is automated through the application of hidden Markov models. Results show that, for a truss configuration problem, designers proceed through four procedural states in solving configuration design problems, transitioning from topology design to shape and parameter design. High-performing designers are distinguished by their opportunistic tuning of parameters early in the process, enabling a heuristic search process similar to the A* search algorithm.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ayush Raina ◽  
Jonathan Cagan ◽  
Christopher McComb

Abstract Solving any design problem involves planning and strategizing, where intermediate processes are identified and then sequenced. This is an abstract skill that designers learn over time and then use across similar problems. However, this transfer of strategies in design has not been effectively modeled or leveraged within computational agents. This note presents an approach to represent design strategies using a probabilistic model. The model provides a mechanism to generate new designs based on certain design strategies while solving configuration design task in a sequential manner. This work also demonstrates that this probabilistic representation can be used to transfer strategies from human designers to computational design agents in a way that is general and useful. This transfer-driven approach opens up the possibility of identifying high-performing behavior in human designers and using it to guide computational design agents. Finally, a quintessential behavior of transfer learning is illustrated by agents as transferring design strategies across different problems led to an improvement in agent performance. The work presented in this study leverages the Cognitively Inspired Simulated Annealing Teams (CISAT) framework, an agent-based model that has been shown to mimic human problem-solving in configuration design problems.


2015 ◽  
Vol 135 (12) ◽  
pp. 1517-1523 ◽  
Author(s):  
Yicheng Jin ◽  
Takuto Sakuma ◽  
Shohei Kato ◽  
Tsutomu Kunitachi

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Sign in / Sign up

Export Citation Format

Share Document