Weak Instability of Chen–Ricles Explicit Method for Structural Dynamics

Author(s):  
Shuenn-Yih Chang

Although the Chen–Ricles (CR) explicit method (CRM) (proposed by Chen and Ricles) has been claimed to have desired numerical properties, such as unconditional stability, explicit formulation, and second-order accuracy, it also shows some unusual properties, such as a less accuracy of solving highly nonlinear systems, a high-frequency overshoot in steady-state responses, and a weak instability. A correction scheme by adjusting the displacement difference equation with a loading term can be employed to extinguish the high-frequency overshoot in steady-state responses. However, there is still no way to get rid of the weak instability and to improve the less accuracy of solving highly nonlinear systems. It is recognized that a weak instability might result in inaccurate solutions or numerical explosions. Hence, the practical applications of CRM are strictly limited.

2001 ◽  
Vol 6 (5) ◽  
pp. 279-287 ◽  
Author(s):  
G. Savio ◽  
J. Cárdenas ◽  
M. Pérez Abalo ◽  
A. González ◽  
J. Valdés

2002 ◽  
Vol 13 (04) ◽  
pp. 205-224 ◽  
Author(s):  
Andrew Dimitrijevic ◽  
Sasha M. John ◽  
Patricia Van Roon ◽  
David W. Purcell ◽  
Julija Adamonis ◽  
...  

Multiple auditory steady-state responses were evoked by eight tonal stimuli (four per ear), with each stimulus simultaneously modulated in both amplitude and frequency. The modulation frequencies varied from 80 to 95 Hz and the carrier frequencies were 500, 1000, 2000, and 4000 Hz. For air conduction, the differences between physiologic thresholds for these mixed-modulation (MM) stimuli and behavioral thresholds for pure tones in 31 adult subjects with a sensorineural hearing impairment and 14 adult subjects with normal hearing were 14 ± 11, 5 ± 9, 5 ± 9, and 9 ± 10 dB (correlation coefficients .85, .94, .95, and .95) for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. Similar results were obtained in subjects with simulated conductive hearing losses. Responses to stimuli presented through a forehead bone conductor showed physiologic-behavioral threshold differences of 22 ± 8, 14 ± 5, 5 ± 8, and 5 ± 10 dB for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. These responses were attenuated by white noise presented concurrently through the bone conductor.


2001 ◽  
Vol 112 (3) ◽  
pp. 555-562 ◽  
Author(s):  
M.Sasha John ◽  
Andrew Dimitrijevic ◽  
Terence W Picton

Sign in / Sign up

Export Citation Format

Share Document