High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution: Shock Tube Measurements and Comparison of the Performance of Kinetic Mechanisms

Author(s):  
Samuel Barak ◽  
Erik Ninnemann ◽  
Sneha Neupane ◽  
Frank Barnes ◽  
Jayanta Kapat ◽  
...  

In this study, syngas combustion was investigated behind reflected shock waves in CO2 bath gas to measure ignition delay times (IDT) and to probe the effects of CO2 dilution. New syngas data were taken between pressures of 34.58–45.50 atm and temperatures of 1113–1275 K. This study provides experimental data for syngas combustion in CO2 diluted environments: ignition studies in a shock tube (59 data points in 10 datasets). In total, these mixtures covered a range of temperatures T, pressures P, equivalence ratios φ, H2/CO ratio θ, and CO2 diluent concentrations. Multiple syngas combustion mechanisms exist in the literature for modeling IDTs and their performance can be assessed against data collected here. In total, twelve mechanisms were tested and presented in this work. All mechanisms need improvements at higher pressures for accurately predicting the measured IDTs. At lower pressures, some of the models agreed relatively well with the data. Some mechanisms predicted IDTs which were two orders of magnitudes different from the measurements. This suggests that there is behavior that has not been fully understood on the kinetic models and is inaccurate in predicting CO2 diluted environments for syngas combustion. To the best of our knowledge, current data are the first syngas IDTs measurements close to 50 atm under highly CO2 diluted (85% per vol.) conditions.

Author(s):  
Samuel Barak ◽  
Erik Ninnemann ◽  
Sneha Neupane ◽  
Frank Barnes ◽  
Jayanta Kapat ◽  
...  

In this study, syngas combustion was investigated behind reflected shock waves in CO2 bath gas to measure ignition delay times and to probe the effects of CO2 dilution. New syngas data were taken between pressures of 34.58–45.50 atm and temperatures of 1113–1275K. This study provides experimental data for syngas combustion in CO2 diluted environments: ignition studies in a shock tube (59 data points in 10 datasets). In total, these mixtures covered a range of temperatures T, pressures P, equivalence ratios φ, H2/CO ratio θ, and CO2 diluent concentrations. Multiple syngas combustion mechanisms exist in the literature for modelling ignition delay times and their performance can be assessed against data collected here. In total, twelve mechanisms were tested and presented in this work. All mechanisms need improvements at higher pressures for accurately predicting the measured ignition delay times. At lower pressures, some of the models agreed relatively well with the data. Some mechanisms predicted ignition delay times which were 2 orders of magnitudes different from the measurements. This suggests there is behavior that has not been fully understood on the kinetic models and are inaccurate in predicting CO2 diluted environments for syngas combustion. To the best of our knowledge, current data are the first syngas ignition delay times measurements close to 50 atm under highly CO2 diluted (85% per vol.) conditions.


Author(s):  
Owen Pryor ◽  
Batikan Koroglu ◽  
Samuel Barak ◽  
Joseph Lopez ◽  
Erik Ninnemann ◽  
...  

Ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 1 and 31 atm. The experimental mixtures were conducted at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5%–5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (GRI 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane under these conditions. Current data provides crucial validation data needed for development of future methane/CO2 kinetic mechanisms.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Owen Pryor ◽  
Samuel Barak ◽  
Joseph Lopez ◽  
Erik Ninnemann ◽  
Batikan Koroglu ◽  
...  

Ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5% to 5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (gri 3.0 and aramco mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into account the different parameters showing the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO2/O2 under these conditions. Current data provides crucial validation data needed for the development of future kinetic mechanisms.


Author(s):  
Samuel Barak ◽  
Owen Pryor ◽  
Joseph Lopez ◽  
Erik Ninnemann ◽  
Subith Vasu ◽  
...  

In this study, syngas combustion was investigated behind reflected shock waves in order to gain insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and light emissions time-histories measurements were taken at a 2 cm axial location away from the end wall. High-speed visualization of the experiments from the end wall was also conducted. Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging from 60% to 85% by volume. A 10% fuel concentration was consistently used throughout the experiments. This study looked at the effects of changing the equivalence ratios (ϕ), between 0.33, 0.5, and 1.0 as well as changing the fuel ratio (θ), hydrogen to carbon monoxide, from 0.25, 1.0, and 4.0. The study was performed at 1.61–1.77 atm and a temperature range of 1006–1162 K. The high-speed imaging was performed through a quartz end wall with a Phantom V710 camera operated at 67,065 frames per second. From the experiments, when increasing the equivalence ratio, it resulted in a longer ignition delay time. In addition, when increasing the fuel ratio, a lower ignition delay time was observed. These trends are generally expected with this combustion reaction system. The high-speed imaging showed nonhomogeneous combustion in the system; however, most of the light emissions were outside the visible light range where the camera is designed for. The results were compared to predictions of two combustion chemical kinetic mechanisms: GRI v3.0 and AramcoMech v2.0 mechanisms. In general, both mechanisms did not accurately predict the experimental data. The results showed that current models are inaccurate in predicting CO2 diluted environments for syngas combustion.


1995 ◽  
Vol 418 ◽  
Author(s):  
R. O. Foelsche ◽  
M. J. Spalding ◽  
R. L. Burton ◽  
H. Krier

AbstractBoron ignition delay times for 24 μm diameter particles have been measured behind the reflected shock at a shock tube endwall in reduced oxygen atmospheres and in a combustion bomb at higher pressures in the products of a hydrogen/oxygen/nitrogen reaction. The shock tube study independently varies temperature (1400 – 3200 K), pressure (8.5, 34 atm), and ignition-enhancer additives (water vapor, fluorine compounds). A combustion chamber is used at a peak pressure of 157 atm and temperature in excess of 2800 K to study ignition delays at higher pressures than are possible in the shock tube.


Author(s):  
Weijing Wang ◽  
Matthew A. Oehlschlaeger

The autoignition of fatty-acid methyl ester biodiesels and methyl ester biodiesel components was studied in gas-phase shock tube experiments. Ignition delay times for two reference methyl ester biodiesel fuels, derived from methanol-based transesterification of soybean oil and animal fats, and four primary constituents of all methyl ester biodiesels, methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate, were measured behind reflected shock waves for fuel/air mixtures at temperatures ranging from 900 to 1350 K and at pressures around 10 and 20 atm. Ignition delay times were determined by monitoring pressure and chemiluminescence from electronically-excited OH radicals around 310 nm. The results show similarity in ignition delay times for all methyl ester fuels considered, irrespective of the variations in organic structure, at the high-temperature conditions studied and also similarity in high-temperature ignition delay times for methyl esters and n-alkanes.


Author(s):  
Samuel Barak ◽  
Owen Pryor ◽  
Joseph Lopez ◽  
Erik Ninnemann ◽  
Subith Vasu ◽  
...  

In this study, syngas combustion was investigated behind reflected shock waves in order to gain insight into the behavior of ignition delay times and effects of the CO2 dilution. Pressure and light emissions time-histories measurements were taken at a 2cm axial location away from the end wall. High-speed visualization of the experiments from the end wall was also conducted. Oxy-syngas mixtures that were tested in the shock tube were diluted with CO2 fractions ranging from 60% – 85% by volume. A 10% fuel concentration was consistently used throughout the experiments. This study looked at the effects of changing the equivalence ratios (ϕ), between 0.33, 0.5, and 1.0 as well as changing the fuel ratio (θ), hydrogen to carbon monoxide, from 0.25, 1.0 and 4.0. The study was performed at 1.61–1.77 atm and a temperature range of 1006–1162K. The high-speed imaging was performed through a quartz end wall with a Phantom V710 camera operated at 67,065 frames per second. From the experiments, when increasing the equivalence ratio, it resulted in a longer ignition delay time. In addition, when increasing the fuel ratio, a lower ignition delay time was observed. These trends are generally expected with this combustion reaction system. The high-speed imaging showed non-homogeneous combustion in the system, however, most of the light emissions were outside the visible light range where the camera is designed for. The results were compared to predictions of two combustion chemical kinetic mechanisms: GRI v3.0 and AramcoMech v2.0 mechanisms. In general, both mechanisms did not accurately predict the experimental data. The results showed that current models are inaccurate in predicting CO2 diluted environments for syngas combustion.


2020 ◽  
Vol 234 (7-9) ◽  
pp. 1329-1357 ◽  
Author(s):  
László Kawka ◽  
Gergely Juhász ◽  
Máté Papp ◽  
Tibor Nagy ◽  
István Gy. Zsély ◽  
...  

AbstractAmmonia is a potential fuel for the storage of thermal energy. Experimental data were collected for homogeneous ammonia combustion: ignition delay times measured in shock tubes (247 data points in 28 datasets from four publications) and species concentration measurements from flow reactors (194/22/4). The measurements cover wide ranges of temperature T, pressure p, equivalence ratio φ and dilution. The experimental data were encoded in ReSpecTh Kinetics Data Format version 2.2 XML files. The standard deviations of the experimental datasets used were determined based on the experimental errors reported in the publications and also on error estimations obtained using program MinimalSplineFit. Simulations were carried out with eight recently published mechanisms at the conditions of these experiments using the Optima++ framework code, and the FlameMaster and OpenSmoke++ solver packages. The performance of the mechanisms was compared using a sum-of-square error function to quantify the agreement between the simulations and the experimental data. Ignition delay times were well reproduced by five mechanisms, the best ones were Glarborg-2018 and Shrestha-2018. None of the mechanisms were able to reproduce well the profiles of NO, N2O and NH3 concentrations measured in flow reactors.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Andrew R. Laich ◽  
Jessica Baker ◽  
Erik Ninnemann ◽  
Clayton Sigler ◽  
Clemens Naumann ◽  
...  

Abstract Ignition delay times were measured for methane/O2 mixtures in a high dilution environment of either CO2 or N2 using a shock tube facility. Experiments were performed between 1044 K and 1356 K at pressures near 16 ± 2 atm. Test mixtures had an equivalence ratio of 1.0 with 16.67% CH4, 33.33% O2, and 50% diluent. Ignition delay times were measured using OH* emission and pressure time-histories. Data were compared to the predictions of two literature kinetic mechanisms (ARAMCO MECH 2.0 and GRI Mech 3.0). Most experiments showed inhomogeneous (mild) ignition which was deduced from five time-of-arrival pressure transducers placed along the driven section of the shock tube. Further analysis included determination of blast wave velocities and locations away from the end wall of initial detonations. Blast velocities were 60–80% of CJ-Detonation calculations. A narrow high temperature region within the range was identified as showing homogenous (strong) ignition which showed generally good agreement with model predictions. Model comparisons with mild ignition cases should not be used to further refine kinetic mechanisms, though at these conditions, insight was gained into various ignition behavior. To the best of our knowledge, we present first shock tube data during ignition of high fuel loading CH4/O2 mixtures diluted with CO2 and N2.


Author(s):  
Andrew R. Laich ◽  
Jessica Baker ◽  
Erik Ninnemann ◽  
Clayton Sigler ◽  
Clemens Naumann ◽  
...  

Abstract Ignition delay times were measured for methane/O2 mixtures in a high dilution environment of either CO2 or N2 using a shock tube facility. Experiments were performed between 1044 K and 1356 K at pressures near 16 ± 2 atm. Test mixtures had an equivalence ratio of 1.0 with 16.67% CH4, 33.33% O2, and 50% diluent. Ignition delay times were measured using OH* emission and pressure time-histories. Data were compared to the predictions of two literature kinetic mechanisms (ARAMCO MECH 2.0 and GRI Mech 3.0). Most experiments showed inhomogeneous (mild) ignition which was deduced from five time-of-arrival pressure transducers placed along the driven section of the shock tube. Further analysis included determination of blast wave velocities and locations away from the end wall of initial detonations. Blast velocities were 60–80% of CJ-Detonation calculations. A narrow high temperature region within the range was identified as showing homogenous (strong) ignition which showed generally good agreement with model predictions. Model comparisons with mild ignition cases should not be used to further refine kinetic mechanisms, though at these conditions, insight was gained into various ignition behavior. To the best of our knowledge, we present first shock tube data during ignition of high fuel loading CH4/O2 mixtures diluted with CO2 and N2.


Sign in / Sign up

Export Citation Format

Share Document