Study of Adiabatic Obstacles on Natural Convection in a Square Cavity Using Lattice Boltzmann Method

Author(s):  
Pawan Karki ◽  
Ajay Kumar Yadav ◽  
D. Arumuga Perumal

This study involves the effect of adiabatic obstacles on two-dimensional natural convection in a square enclosure using lattice Boltzmann method (LBM). The enclosure embodies square-shaped adiabatic obstacles with one, two, and four in number. The single obstacle in cavity is centrally placed, whereas for other two configurations, a different arrangement has been made such that the core fluid zone is not hampered. The four boundaries of the cavity considered here consist of two adiabatic horizontal walls and two differentially heated vertical walls. The current study covers the range of Rayleigh number (103 ≤ Ra ≤ 106) and a fixed Prandtl number of 0.71 for all cases. The effect of size of obstacle is studied in detail for single obstacle. It is found that the average heat transfer along the hot wall increases with the increase in size of obstacle until it reaches an optimum value and then with further increase in size, the heat transfer rate deteriorates. Study is carried out to delineate the comparison between the presences of obstacle in and out of the conduction dominant zone in the cavity. The number of obstacles (two and four) outside of this core zone shows that heat transfer decreases despite the obstacle being adiabatic in nature.

2019 ◽  
Vol 86 (2) ◽  
pp. 20902 ◽  
Author(s):  
Lyes Nasseri ◽  
Omar Rahli ◽  
Djamel Eddine Ameziani ◽  
Rachid Bennacer

This paper presents a numerical study of heat transfer by convection in a square cavity. The vertical walls of the cavity are differentially heated and the horizontal ones are considered adiabatic. A fan is placed in the middle of the cavity and releases a jet down. Numerical simulation was performed using the lattice Boltzmann method to show the flow patterns and the heat flux depending on the Rayleigh number (thermal convection intensity) and the Reynolds number (fan-driven flow intensity). A parametric study was performed presenting the influence of Reynolds number (20 ≤ Re ≤ 500), Rayleigh number (10 ≤ Ra ≤ 106) and the fan position (0.2 ≤ HF ≤ 0.8). In forced convection mode, the flow structure has been mapped according to the position and the power of the fan. Three structures have emerged: two symmetrical cells, four symmetrical cells and asymmetrical structure. It has been observed that the heat transfer rate increases with the rise of Reynolds number and the reduction of the distance of the fan position from the ceiling. For the latter one, an unfavorable evolution of Nusselt number is observed for Ra > 104.


2019 ◽  
Vol 29 (10) ◽  
pp. 3659-3684 ◽  
Author(s):  
Rasul Mohebbi ◽  
Mohsen Izadi ◽  
Nor Azwadi Che Sidik ◽  
Gholamhassan Najafi

Purpose This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on various parameters such as number and aspect ratio of roughness elements and different nanoparticle volume fraction. The isotherms and streamlines are presented to describe the hydrodynamics and thermal behaviors of the nanofluid flow throughout the enclosure. Design/methodology/approach The methodology of this paper consists of mathematical model, statement of the problem, nanofluid thermophysical properties, lattice Boltzmann method, LBM for fluid flow, LBM for heat transfer, numerical strategy, boundary conditions, Nusselt (Nu) number calculation, code validation and grid independence. Findings Natural convection heat transfers of a nanofluid inside cavities with and without rough elements have been studied. Lattice Boltzmann technique has been used as numerical approach. The results showed that at higher Rayleigh number (Ra = 106), there are denser streamlines near the left (source) and right wall (sink) which results in better cooling and enhances convective heat rejection to the heat sink. After a distinctive aspect ratio of rough elements (A = 0.1), change in streamline pattern which arises from increasing of aspect ratio does not have an important effect on isotherms. Results indicate that for lower Rayleigh number (Ra = 103), no variation in average Nu is observed with increasing in number of roughness, while for higher one (Ra = 106) average Nu decreases from N = 0 (smooth cavity) up to N = 4 and then remains constant (N = 6). Originality/value Currently, no argumentative and comprehensive extraction can be concluded without fully understanding the role of different arrangement of roughness. Some geometrical parameters such as aspect ratio, number and position of rough elements have been considered. Also, the effect of nanoparticle concentration was studied at different Ra number. Briefly, using LBM, this paper aims to investigate the natural convection of a nanofluid flow on the thermal and hydrodynamics parameters in the presence of rough element with various arrangements.


2019 ◽  
Vol 29 (12) ◽  
pp. 4746-4763 ◽  
Author(s):  
Qingang Xiong ◽  
Arash Khosravi ◽  
Narjes Nabipour ◽  
Mohammad Hossein Doranehgard ◽  
Aida Sabaghmoghadam ◽  
...  

Purpose This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus. Design/methodology/approach The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters. Findings The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented. Originality/value The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.


2002 ◽  
Vol 13 (10) ◽  
pp. 1399-1414 ◽  
Author(s):  
C. SHU ◽  
Y. PENG ◽  
Y. T. CHEW

The Taylor series expansion- and least squares-based lattice Boltzmann method (TLLBM) was used in this paper to extend the current thermal model to an arbitrary geometry so that it can be used to solve practical thermo-hydrodynamics in the incompressible limit. The new explicit method is based on the standard lattice Boltzmann method (LBM), Taylor series expansion and the least squares approach. The final formulation is an algebraic form and essentially has no limitation on the mesh structure and lattice model. Numerical simulations of natural convection in a square cavity on both uniform and nonuniform grids have been carried out. Favorable results were obtained and compared well with the benchmark data. It was found that, to get the same order of accuracy, the number of mesh points used on the nonuniform grid is much less than that used on the uniform grid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shayan Naseri Nia ◽  
Faranak Rabiei ◽  
M. M. Rashidi

Purpose This paper aims to use the Lattice Boltzmann method (LBM) to numerically simulate the natural convection heat transfer of Cu-water nanofluid in an L-shaped enclosure with curved boundaries. Design/methodology/approach LBM on three different models of curved L-shape cavity using staircase approach is applied to perform a comparative investigation for the effects of curved boundary on fluid flow and heat transfer. The staircase approximation is a straightforward and efficient approach to simulating curved boundaries in LBM. Findings The effect of curved boundary on natural convection in different parameter ranges of Rayleigh number and nanoparticle volume fraction is investigated. The curved L-shape results are also compared to the rectangular L-shape results that were also achieved in this study. The curved boundary LBM simulation is also validated with existing studies, which shows great accuracy in this study. The results show that the top curved boundary in curved L-shape models causes a notable increase in the Nusselt number values. Originality/value Based on existing literature, there is a lack of comparative studies which would specifically examine the effects of curved boundaries on natural convection in closed cavities. Particularly, the application of curved boundaries to an L-shape cavity has not been examined. In this study, curved boundaries are applied to the sharp corners of the bending section in the L-shape and the results of the curved L-shape models are compared to the simple rectangular L-shape model. Hence, a comparative evaluation is performed for the effect of curved boundaries on fluid flow in the L-shape enclosure.


Author(s):  
Ying Zhang ◽  
Xuhui Huang ◽  
Yichen Huang ◽  
Meng Xu ◽  
Jie Lei

Based on the non-orthogonal multiple-relaxation time lattice Boltzmann method (MRT-LBM), natural convection in a porous square cavity with a pair of isothermally hot and cold blocks inside has been studied numerically in the current study. The influence of arrangements (Case1, Case2, Case3, Case4, Case5), spacing ratio (S) and size ratio (A) of the hot and cold sources and the Rayleigh number (Ra) on the heat exchange efficiency has been studied. The results show that different arrangements produce different heat transfer effects. Hot and cold blocks placed horizontally (Case1) and hot block located in the upper left corner while cold block located in the bottom right corner (Case4) have better heat exchange performances than other three cases since the flow directions of hot and cold fluids are closer to that of heat transfer. Then the influence of spacing between blocks and size of blocks on heat transfer rate is further studied in Case1 and Case4. The heat transfer performance is improved with A increasing. Additionally, the variation of heat transfer performance with spacing is related to the arrangement and size ratio of blocks. For Ra=104, 105 and 106, the best heat transfer characteristic can be obtained in Case1 when S=0.05 and A=0.20. For Ra=107, Case4 exhibits the best heat transfer effect when S=0.35 and A=0.20.


Sign in / Sign up

Export Citation Format

Share Document