Elastic Wave Propagation in Open-Cell Foams

2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Alireza Bayat ◽  
Stavros Gaitanaros

This work examines elastic wave propagation phenomena in open-cell foams with the use of the Bloch wave method and finite element analysis. Random foam topologies are generated with the Surface Evolver and subsequently meshed with Timoshenko beam elements, creating open-cell foam models. Convergence studies on band diagrams of different domain sizes indicate that a representative volume element (RVE) consists of at least 83 cells. Wave directionality and energy flow features are investigated by extracting phase and group velocity plots. Explicit dynamic simulations are performed on finite size domains of the considered foam structure to validate the RVE results. The effect of topological disorder is studied in detail, and excellent agreement is found between the wave behavior of the random foam and that of both the regular and perturbed Kelvin foams in the low-frequency regime. In higher modes and frequencies, however, as the wavelengths become smaller, disorder has a significant effect and the deviation between regular and random foam increases significantly.

AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065009
Author(s):  
Xi-Ning Zhao ◽  
Xiao-Dong Yang ◽  
Wei Zhang ◽  
Huayan Pu

2019 ◽  
Vol 146 (3) ◽  
pp. 1519-1527 ◽  
Author(s):  
ZhiWei Zhu ◽  
ZiChen Deng ◽  
ShuZhan Tong ◽  
BenJie Ding ◽  
JianKe Du

Sign in / Sign up

Export Citation Format

Share Document