Estimation of Tritium and Dust Source Term in European DEMOnstration Fusion Reactor During Accident Scenarios

Author(s):  
Guido Mazzini ◽  
Tadas Kaliatka ◽  
Maria Teresa Porfiri

The safety features of the future nuclear fusion reactors are one of the key issues for their attractiveness if compared with the fission plants. In fusion devices, accidents with high release of radioactive materials have low probabilities because the most part of abnormal transients lead to passive plasma shutdown. It does not mean that radiological source terms such tritium and activated dust are not generated and released, but their inventory does not increase during abnormal events. Therefore, the source term inventory has to be assessed during normal operation and traced when accidents occur. For this reason, a study for qualification and quantification of the tritium and dust source term (DTS) was established with the aim to understand their production, deposition, and penetration in the vacuum vessel (VV) and in the breeding blanket (BB). The main concern is source term release during the main accident scenarios to comply with a future licensing process. In case of abnormal event scenarios, the source term inventory involved in the release changes and requires a different confinement approach and mitigation. For the estimation of the source term in the DEMOnstration Fusion Power Station (DEMO), a methodology was developed. The methodology scales the tritium and DTS inside the VV from the International Thermonuclear Experimental Reactor, the European Power Plant Conceptual Study, and reports the tritium generated inside the breeder blanket from data quantified in other studies for DEMO. In this article, the methodology was updated and tritium and DTS for DEMO 2016 design were estimated. Moreover, the tritium and dust release pathways were highlighted according to different accidental scenarios. These results were obtained for all blanket concepts, which are analyzing in the ongoing DEMO EUROFusion project. The values estimated in this article will be used in the safety analyses to evaluate releases or to quantify the operational limits starting from values postulated in International Thermonuclear Experimental Reactor.

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 557
Author(s):  
Egor Kashkarov ◽  
Bright Afornu ◽  
Dmitrii Sidelev ◽  
Maksim Krinitcyn ◽  
Veronica Gouws ◽  
...  

Zirconium-based alloys have served the nuclear industry for several decades due to their acceptable properties for nuclear cores of light water reactors (LWRs). However, severe accidents in LWRs have directed research and development of accident tolerant fuel (ATF) concepts that aim to improve nuclear fuel safety during normal operation, operational transients and possible accident scenarios. This review introduces the latest results in the development of protective coatings for ATF claddings based on Zr alloys, involving their behavior under normal and accident conditions in LWRs. Great attention has been paid to the protection and oxidation mechanisms of coated claddings, as well as to the mutual interdiffusion between coatings and zirconium alloys. An overview of recent developments in barrier coatings is introduced, and possible barrier layers and structure designs for suppressing mutual diffusion are proposed.


Physics Today ◽  
1996 ◽  
Vol 49 (6) ◽  
pp. 21-25 ◽  
Author(s):  
Andrew M. Sessler ◽  
Thomas H. Stix ◽  
Marshall N. Rosenbluth

Author(s):  
S. P. Saraswat ◽  
P. Munshi ◽  
A. Khanna ◽  
C. Allison

The initial design of ITER incorporated the use of carbon fiber composites in high heat flux regions and tungsten was used for low heat flux regions. The current design includes tungsten for both these regions. The present work includes thermal hydraulic modeling and analysis of ex-vessel loss of coolant accident (LOCA) for the divertor (DIV) cooling system. The purpose of this study is to show that the new concept of full tungsten divertor is able to withstand in the accident scenarios. The code used in this study is RELAP/SCADAPSIM/MOD 4.0. A parametric study is also carried out with different in-vessel break sizes and ex-vessel break locations. The analysis discusses a number of safety concerns that may result from the accident scenarios. These concerns include vacuum vessel (VV) pressurization, divertor temperature profile, passive decay heat removal capability of structure, and pressurization of tokamak cooling water system. The results show that the pressures and temperatures are kept below design limits prescribed by ITER organization.


Sign in / Sign up

Export Citation Format

Share Document