Large Eddy Simulation of Multiple-Stage Ignition Process of n-Heptane Spray Flame

Author(s):  
Wanhui Zhao ◽  
Lei Zhou ◽  
Wenjin Qin ◽  
Haiqiao Wei

Large eddy simulation of n-heptane spray flames is conducted to investigate the multiple-stage ignition process under extreme (low-temperature, low oxygen, and high-temperature, high-density) conditions. At low oxygen concentrations, the first-stage ignition initiates in the fuel-rich region and then moves to stoichiometric equivalence ratio regions by decreasing the initial temperature. It is also clear that at high temperatures, high oxygen concentrations, or high densities, the reactivity of the mixture is enhanced, where high values of progress variable are observed. Analysis of key intermediate species, including acetylene (C2H2), formaldehyde (CH2O), and hydroxyl (OH) in the mixture fraction and temperature space provides valuable insights into the complex combustion process of the n-heptane spray flames under different initial conditions. The results also suggest that C2H2 appears over a wider range in the mixture fraction space at higher temperature or oxygen concentration condition, implying that it mainly forms at the fuel-rich regions. The initial oxygen concentration of the ambient gas has great influence on the formation and oxidization of C2H2, and the maximum temperature depends on the initial oxygen concentration. OH is mainly formed at the stoichiometric equivalence ratio region, which moves to high-temperature regions very quickly especially at higher oxygen concentrations. Finally, analysis of the premixed and nonpremixed combustion regimes in n-heptane spray flames is also conducted, and both premixed and nonpremixed combustion coexist in spray flames.

Author(s):  
Yingjie Qiao ◽  
Ronghai Mao ◽  
Yuzhen Lin

The ignition performance is a crucial issue for combustor design, especially when lean burn technologies are employed to reduce the NOx emission. Ignition is the initiation of a flame kernel followed by flame propagation and global establishment. The initiation of flame kernel is beyond the scope of this paper because it involves plasma formation process. The present investigation is mainly focused on flame front propagation which is modeled by solving a transport equation of reaction progress variable. Large eddy simulation (LES) with flamelet model has been employed to study the effect of various spark location under engine start condition. The numerical approach is validated by ignition experiments with turbulent bluff-body burner conducted by Ahmed and Mastorakos in Cambridge University. Mean and transient characteristics of velocity, mixture fraction and flame structures are compared with experimental data, to assess the accuracy of simulation in terms of flow structure, turbulent mixing and combustion performances. The validated LES model is then applied to study a series of physical locations of the spark plug in a single dome combustor. Successful and unsuccessful ignition sequences, time evolution of velocity and fuel/air ratio (FAR) of selected spots are recorded. Comparing the unsuccessful ignition with the successful ones, whether flame kernel enters into the CRZ and ignites the flammable mixture is a critical process which determines successful ignition. The evolution of flame kernel is correlated to flow field and fuel/air distribution to further analyze their effects on the ignition process. Since the process is highly transient, successful ignition is not only determined by parameters of spark location, but also influenced by the parameters throughout the flow path during flame propagation.


Fuel ◽  
2015 ◽  
Vol 142 ◽  
pp. 152-163 ◽  
Author(s):  
Masaya Muto ◽  
Hiroaki Watanabe ◽  
Ryoichi Kurose ◽  
Satoru Komori ◽  
Saravanan Balusamy ◽  
...  

Author(s):  
Murase Kagenobu ◽  
Oshima Nobuyuki ◽  
Takahashi Yusuke

This paper focuses on the numerical simulation of Sandia National Laboratories “the piloted methane/air burner flame D.” Large Eddy Simulation and 2-scalar flamelet approach are applied for the turbulent and partially premixed combustion field, which is expressed by the LES filtered equations of scalar G for tracking the flame surfaces and mixture fraction of a fuel and an oxidizer. The flamelet data consists of temperature, specific volume and laminar flame speed are calculated by the detail chemical reaction with GRI-Mech 3.0. Two kinds of flamelet data are validated; one is “equilibrium flamelet data” calculated by 0-dimensional equilibrium solution based on equilibrium model; the other is “diffusion flamelet data” calculated by 1-dimensional counter flow solution based on laminar flamelet model. Consequently, the “diffusion flamelet data” gives better result in this type of combustion field.


Author(s):  
S. Puggelli ◽  
T. Lancien ◽  
K. Prieur ◽  
D. Durox ◽  
S. Candel ◽  
...  

Abstract The process of ignition in aero-engines raises many practical issues that need to be faced during the design process. Recent experiments and simulations have provided detailed insights on ignition in single-injector configurations and on the light-round sequence in annular combustors. It was shown that Large Eddy Simulation (LES) was able to reliably reproduce the physical phenomena involved in the ignition of both perfectly premixed and liquid spray flames. The present study aims at further extending the knowledge on flame propagation during the ignition of annular multiple injector combustors by focusing the attention on the effects of heat losses, which have not been accounted for in numerical calculations before. This problem is examined by developing Large Eddy Simulations of the light-round process with a fixed temperature at the solid boundaries. Calculations are carried out for a laboratory-scale annular system. Results are compared in terms of flame shape and light-round duration with available experiments and with an adiabatic LES serving as a reference. Wall heat losses lead to a significant reduction in the flame propagation velocity as observed experimentally. However, the LES underestimates this effect and leads to a globally shorter light-round. To better understand this discrepancy, the study focuses then on the analysis of the near wall region where the velocity and temperature boundary layers must be carefully described. An a-priori analysis underlines the shortcomings associated to the chosen wall law by considering a more advanced wall model that fully accounts for variable thermophysical properties and for the unsteadiness of the boundary layer.


Author(s):  
P. K. Senecal ◽  
E. Pomraning ◽  
Q. Xue ◽  
S. Som ◽  
S. Banerjee ◽  
...  

A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [1, 2], is applied to Large Eddy Simulations (LES) of vaporizing sprays. Simulations of non-combusting Spray A (n-dodecane fuel) from the Engine Combustion Network are performed. An Adaptive Mesh Refinement (AMR) cell size of 0.0625 mm is utilized based on the accuracy/runtime tradeoff demonstrated by Senecal et al. [2]. In that work it was shown that grid convergence of key parameters for non-evaporating and evaporating sprays was achieved for cell sizes between 0.0625 and 0.125 mm using the Dynamic Structure LES model. The current work presents an extended and more thorough investigation of Spray A using multi-dimensional spray modeling and the Dynamic Structure LES model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. Multi-realization (ensemble) averaging is shown to be necessary when comparing to local spray measurements of quantities such as mixture fraction and gas-phase velocity. Through a detailed analysis, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of Diesel sprays. Finally, the effect of a spray primary breakup model constant on the results is assessed.


Sign in / Sign up

Export Citation Format

Share Document