scholarly journals Design Method and Performance Prediction for Radial-Inflow Turbines of High-Temperature Mini-Organic Rankine Cycle Power Systems

Author(s):  
Carlo M. De Servi ◽  
Matteo Burigana ◽  
Matteo Pini ◽  
Piero Colonna

The realization of commercial mini organic Rankine cycle (ORC) power systems (tens of kW of power output) is currently pursued by means of various research and development activities. The application driving most of the efforts is the waste heat recovery from long-haul truck engines. Obtaining an efficient mini radial inflow turbine, arguably the most suitable type of expander for this application, is particularly challenging, given the small mass flow rate, and the occurrence of nonideal compressible fluid dynamic effects in the stator. Available design methods are currently based on guidelines and loss models developed mainly for turbochargers. The preliminary geometry is subsequently adapted by means of computational fluid-dynamic calculations with codes that are not validated in case of nonideal compressible flows of organic fluids. An experimental 10 kW mini-ORC radial inflow turbine will be realized and tested in the Propulsion and Power Laboratory of the Delft University of Technology, with the aim of providing measurement datasets for the validation of computational fluid dynamics (CFD) tools and the calibration of empirical loss models. The fluid dynamic design and characterization of this machine is reported here. Notably, the turbine is designed using a meanline model in which fluid-dynamic losses are estimated using semi-empirical correlations for conventional radial turbines. The resulting impeller geometry is then optimized using steady-state three-dimensional computational fluid dynamic models and surrogate-based optimization. Finally, a loss breakdown is performed and the results are compared against those obtained by three-dimensional unsteady fluid-dynamic calculations. The outcomes of the study indicate that the optimal layout of mini-ORC turbines significantly differs from that of radial-inflow turbines (RIT) utilized in more traditional applications, confirming the need for experimental campaigns to support the conception of new design practices.

Author(s):  
Giacomo Persico ◽  
Matteo Pini ◽  
Vincenzo Dossena ◽  
Paolo Gaetani

The centrifugal turbine architecture is a promising solution for small-to-medium organic Rankine cycle (ORC) power systems. The inherent compactness of the multistage arrangement makes this configuration very attractive for dealing with the high volumetric flow ratios typical of ORC turbines. In absence of experimental evidence, a thorough assessment of the technology can be uniquely based on sufficiently accurate computational fluid dynamic (CFD) simulations. In the present work, the aerodynamic performance of a fixed and a rotating cascade of centrifugal turbine are investigated by applying a three-dimensional CFD model. Precisely, the study is focused on the sixth stage of the transonic centrifugal turbine proposed in Pini et al. (2013, “Preliminary Design of a Centrifugal Turbine for ORC Applications,” ASME J. Eng. Gas Turbines Power, 135(4), p. 042312). After recalling the blade design methodology, the blade-to-blade and secondary flow patterns are carefully studied for both stator and rotor. Results show that the centrifugal configuration exhibits distinctive features if compared to axial turbine layouts. The diverging shape of the bladed channel and the centrifugal force alter significantly the pressure distribution on the profile. Moreover, the Coriolis force induces a slip effect that should be properly included in the preliminary design phase. Provided that the flaring angle is limited, the almost uniform spanwise blade loading greatly augments the three-dimensional performance of the cascades compared to axial rows. In the rotor, the low inlet endwall vorticity and the Coriolis force further weaken the secondary flows, resulting in even lower secondary losses with respect to those predicted by loss models developed for axial turbines. Ultimately, the efficiency of the stage is found to be two points higher than that estimated at preliminary design level, demonstrating the high potential of the centrifugal turbine for ORC applications.


Author(s):  
Karl Ziaja ◽  
Pascal Post ◽  
Marwick Sembritzky ◽  
Andreas Schramm ◽  
Ole Willers ◽  
...  

Abstract The Organic Rankine Cycle (ORC) represents an emerging technology aimed at exploiting lower temperature heat sources, like waste heat in industrial processes or exhaust heat in combustion engines. One key aspect of this technology is an efficient and economical operation at part load, typically realized by a partial admission control, which is challenging to predict numerically. Full annulus computation can only be avoided applying empirical partial admission loss models to conventional full-admission computations. This article aims at assessing the reliability of such a loss model under real-gas and supersonic conditions as a first step towards knowledge-based improved loss models. Three different operating points of an 18.3 kW ORC turbine working with an ethanol-water mixture with two open stator passages (2 × 36°) are considered. Full annulus CFD computations are compared to experimental data and results of simulations in a conventional, full admission, periodic 72°-sector model with application of a 1D partial admission loss model. The experimentally obtained mass flow rate and efficiency are matched overall within their measurements accuracy. By highest inlet total pressure, the computed efficiency deviates about 4 % from the experiments. Predictions of efficiency based on the full admission and loss model correction deviate from full annulus computations less than 1 %. These findings suggest that the used empirical correlations for partial admission losses can provide acceptable results in the configuration under investigation.


Author(s):  
Andrea Meroni ◽  
Jesper Graa Andreasen ◽  
Leonardo Pierobon ◽  
Fredrik Haglind

Organic Rankine cycle (ORC) power systems represent attractive solutions for power conversion from low temperature heat sources, and the use of these power systems is gaining increasing attention in the marine industry. This paper proposes the combined optimal design of cycle and expander for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the waste heat recovery from jacket cooling water of a marine diesel engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature profiles in the heat exchangers and, consequently, reducing the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to pure fluids. In order to properly account for turbine performance and design constraints in the cycle calculation, the thermodynamic cycle and the turbine are optimized simultaneously in the molar composition range of each mixture. Such novel optimization approach enables one to identify to which extent the cycle or the turbine behaviour influences the selection of the optimal solution. It also enables one to find the composition for which an optimal compromise between cycle and turbine performance is achieved. The optimal ORC unit employs pure R245fa and provides approximately 200 kW when the minimum hot fluid temperature is constrained. Conversely, the mixture R245fa/pentane (0.5/0.5) is selected and provides approximately 444 kW when the hot fluid temperature is not constrained to a lower value. In both cases, a compact and efficient turbine can be manufactured.


Author(s):  
Adam Joseph Head ◽  
Carlo De Servi ◽  
Emiliano Casati ◽  
Matteo Pini ◽  
Piero Colonna

Organic Rankine Cycle (ORC) power systems are receiving increased recognition for the conversion of thermal energy when the source potential and/or its temperature are comparatively low. Mini-ORC units in the power output range of 3–50 kWe are actively studied for applications involving heat recovery from automotive engines and the exploitation of solar energy. Efficient expanders are the enabling components of such systems, and all the related developments are at the early research stage. Notably, no experimental gasdynamic data are available in the open literature concerning the fluids and flow conditions of interest for mini-ORC expanders. Therefore, all the performance estimation and the fluid dynamic design methodologies adopted in the field rely on non-validated tools. In order to bridge this gap, a new experimental facility capable of continuous operation is being designed and built at Delft University of Technology, the Netherlands. The Organic Rankine Cycle Hybrid Integrated Device (ORCHID) is a research facility resembling a state-of-the-art high-temperature ORC system. It is flexible enough to treat different working fluids and operating conditions with the added benefit of two interchangeable Test Sections (TS’s). The first TS is a supersonic nozzle with optical access whose purpose is to perform gas dynamic experiments on dense organic flows in order to validate numerical codes. The second TS is a test-bench for mini-ORC expanders of any configuration up to a power output of 100 kWe. This paper presents the preliminary design of the ORCHID setup, discussing how the required operational flexibility was attained. The envisaged experiments of the two TS’s are also described.


Author(s):  
Francesco Casella ◽  
Tiemo Mathijssen ◽  
Piero Colonna ◽  
Jos van Buijtenen

New promising applications of organic Rankine cycle (ORC) technology, e.g., concentrated solar power, automotive heat recovery and off-grid distributed electricity generation, demand for more dynamic operation of ORC systems. Accurate physically-based dynamic modeling plays an important role in the development of such systems, both during the preliminary design as an aid for configuration and equipment selection, and for control design and optimization purposes. A software library of modular reusable dynamic models of ORC components has been developed in the MODELICA language and is documented in the paper. The model of an exemplary ORC system, namely the 150 kWe Tri-O-Gen ORC turbogenerator is validated using few carefully conceived experiments. The simulations are able to reproduce steady-state and dynamic measurements of key variables, both in nominal and in off-design operating conditions. The validation of the library opens doors to control-related studies, and to the development of more challenging dynamic applications of ORC power plants.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4967
Author(s):  
Shiyang Teng ◽  
Yong-Qiang Feng ◽  
Tzu-Chen Hung ◽  
Huan Xi

Cogeneration of heat and power systems based on the organic Rankine cycle (ORC-CHP) has been proven to be an effective way to utilize waste heat at medium and low temperatures. In this work, three ORC-CHP (combined heat and power based on organic Rankine cycle) systems are simulated and compared, including the SS (serial system), the CS (the condensation system), and the SS/CS. The multi-objective genetic algorithm (MOGA) is used to optimize the three systems respectively to achieve higher exergy efficiency and profit ratio of investment (PRI). The optimal thermal-economic performance is obtained. Twelve organic fluids are adopted to evaluate their performance as working fluids. The calculation results show that SS has the highest exergy efficiency, while SS/CS has the best economic performance. Compared with the highest exergy efficiency of SS and the best economic performance of SS/CS, CS will be the optimal solution considering these two objective functions. Under the optimal working conditions, SS has the highest thermal efficiency because it has the highest net power output. The components with the largest proportion of exergy destruction are the heat exchangers, which also has the highest cost.


Sign in / Sign up

Export Citation Format

Share Document