Preliminary Design of the ORCHID: A Facility for Studying Non-Ideal Compressible Fluid Dynamics and Testing ORC Expanders

Author(s):  
Adam Joseph Head ◽  
Carlo De Servi ◽  
Emiliano Casati ◽  
Matteo Pini ◽  
Piero Colonna

Organic Rankine Cycle (ORC) power systems are receiving increased recognition for the conversion of thermal energy when the source potential and/or its temperature are comparatively low. Mini-ORC units in the power output range of 3–50 kWe are actively studied for applications involving heat recovery from automotive engines and the exploitation of solar energy. Efficient expanders are the enabling components of such systems, and all the related developments are at the early research stage. Notably, no experimental gasdynamic data are available in the open literature concerning the fluids and flow conditions of interest for mini-ORC expanders. Therefore, all the performance estimation and the fluid dynamic design methodologies adopted in the field rely on non-validated tools. In order to bridge this gap, a new experimental facility capable of continuous operation is being designed and built at Delft University of Technology, the Netherlands. The Organic Rankine Cycle Hybrid Integrated Device (ORCHID) is a research facility resembling a state-of-the-art high-temperature ORC system. It is flexible enough to treat different working fluids and operating conditions with the added benefit of two interchangeable Test Sections (TS’s). The first TS is a supersonic nozzle with optical access whose purpose is to perform gas dynamic experiments on dense organic flows in order to validate numerical codes. The second TS is a test-bench for mini-ORC expanders of any configuration up to a power output of 100 kWe. This paper presents the preliminary design of the ORCHID setup, discussing how the required operational flexibility was attained. The envisaged experiments of the two TS’s are also described.

Author(s):  
Giacomo Persico ◽  
Matteo Pini ◽  
Vincenzo Dossena ◽  
Paolo Gaetani

The centrifugal turbine architecture is a promising solution for small-to-medium organic Rankine cycle (ORC) power systems. The inherent compactness of the multistage arrangement makes this configuration very attractive for dealing with the high volumetric flow ratios typical of ORC turbines. In absence of experimental evidence, a thorough assessment of the technology can be uniquely based on sufficiently accurate computational fluid dynamic (CFD) simulations. In the present work, the aerodynamic performance of a fixed and a rotating cascade of centrifugal turbine are investigated by applying a three-dimensional CFD model. Precisely, the study is focused on the sixth stage of the transonic centrifugal turbine proposed in Pini et al. (2013, “Preliminary Design of a Centrifugal Turbine for ORC Applications,” ASME J. Eng. Gas Turbines Power, 135(4), p. 042312). After recalling the blade design methodology, the blade-to-blade and secondary flow patterns are carefully studied for both stator and rotor. Results show that the centrifugal configuration exhibits distinctive features if compared to axial turbine layouts. The diverging shape of the bladed channel and the centrifugal force alter significantly the pressure distribution on the profile. Moreover, the Coriolis force induces a slip effect that should be properly included in the preliminary design phase. Provided that the flaring angle is limited, the almost uniform spanwise blade loading greatly augments the three-dimensional performance of the cascades compared to axial rows. In the rotor, the low inlet endwall vorticity and the Coriolis force further weaken the secondary flows, resulting in even lower secondary losses with respect to those predicted by loss models developed for axial turbines. Ultimately, the efficiency of the stage is found to be two points higher than that estimated at preliminary design level, demonstrating the high potential of the centrifugal turbine for ORC applications.


Author(s):  
Emiliano Casati ◽  
Salvatore Vitale ◽  
Matteo Pini ◽  
Giacomo Persico ◽  
Piero Colonna

Organic Rankine cycle (ORC) power systems are rapidly diffusing as a technology for the conversion of thermal energy sources in the small-to-medium power range, e.g., from 150 kWe up to several MWe. The most critical component is arguably the expander, especially if the power capacity is small or very small, as it is the case for innovative high-potential applications such as waste heat recovery from truck engines, or distributed conversion of concentrated solar radiation. In these so-called high-temperature applications, the expansion ratio is very high; therefore, turbines are the expanders of choice. Recently, multistage radial-outflow turbines (ROT), a nonconventional turbine configuration, have been studied, and first commercial implementations in the MWe power range have been successful. The objective of this work is the evaluation of the radial-outflow arrangement for the turbine of high-temperature mini-ORC power systems, with power output of the order of 10 kWe. To this end, a method for the preliminary fluid-dynamic design is presented. It consists of an automated optimization procedure based on an in-house mean-line code for the one-dimensional preliminary design and efficiency estimation of turbines. It is first shown that usually adopted simplified design procedures, such as that of the so-called repeating-stage, cannot be extended to minicentrifugal turbines. The novel methodology is applied to the exemplary case of the 10 kWe turbine of an ORC power system for truck engine heat recovery documented in the literature. The expansion ratio is 45. The preliminary fluid-dynamic design of two miniturbines is presented, namely, a five-stage transonic and a three-stage slightly supersonic turbine. The outcome of the preliminary design leads to two turbine configurations whose fluid-dynamic efficiency exceeds 79% and 77%, respectively. The speed of revolution is around 12,400 and 15,400 RPM for the five-stage and the three-stage machine, respectively. These results show that the ROT configuration may allow for compact and efficient expanders for low power output applications.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


Author(s):  
Francesco Casella ◽  
Tiemo Mathijssen ◽  
Piero Colonna ◽  
Jos van Buijtenen

New promising applications of organic Rankine cycle (ORC) technology, e.g., concentrated solar power, automotive heat recovery and off-grid distributed electricity generation, demand for more dynamic operation of ORC systems. Accurate physically-based dynamic modeling plays an important role in the development of such systems, both during the preliminary design as an aid for configuration and equipment selection, and for control design and optimization purposes. A software library of modular reusable dynamic models of ORC components has been developed in the MODELICA language and is documented in the paper. The model of an exemplary ORC system, namely the 150 kWe Tri-O-Gen ORC turbogenerator is validated using few carefully conceived experiments. The simulations are able to reproduce steady-state and dynamic measurements of key variables, both in nominal and in off-design operating conditions. The validation of the library opens doors to control-related studies, and to the development of more challenging dynamic applications of ORC power plants.


Author(s):  
Carlo M. De Servi ◽  
Matteo Burigana ◽  
Matteo Pini ◽  
Piero Colonna

The realization of commercial mini organic Rankine cycle (ORC) power systems (tens of kW of power output) is currently pursued by means of various research and development activities. The application driving most of the efforts is the waste heat recovery from long-haul truck engines. Obtaining an efficient mini radial inflow turbine, arguably the most suitable type of expander for this application, is particularly challenging, given the small mass flow rate, and the occurrence of nonideal compressible fluid dynamic effects in the stator. Available design methods are currently based on guidelines and loss models developed mainly for turbochargers. The preliminary geometry is subsequently adapted by means of computational fluid-dynamic calculations with codes that are not validated in case of nonideal compressible flows of organic fluids. An experimental 10 kW mini-ORC radial inflow turbine will be realized and tested in the Propulsion and Power Laboratory of the Delft University of Technology, with the aim of providing measurement datasets for the validation of computational fluid dynamics (CFD) tools and the calibration of empirical loss models. The fluid dynamic design and characterization of this machine is reported here. Notably, the turbine is designed using a meanline model in which fluid-dynamic losses are estimated using semi-empirical correlations for conventional radial turbines. The resulting impeller geometry is then optimized using steady-state three-dimensional computational fluid dynamic models and surrogate-based optimization. Finally, a loss breakdown is performed and the results are compared against those obtained by three-dimensional unsteady fluid-dynamic calculations. The outcomes of the study indicate that the optimal layout of mini-ORC turbines significantly differs from that of radial-inflow turbines (RIT) utilized in more traditional applications, confirming the need for experimental campaigns to support the conception of new design practices.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1783 ◽  
Author(s):  
Jesper Graa Andreasen ◽  
Martin Ryhl Kærn ◽  
Fredrik Haglind

In this paper, we present an assessment of methods for estimating and comparing the thermodynamic performance of working fluids for organic Rankine cycle power systems. The analysis focused on how the estimated net power outputs of zeotropic mixtures compared to pure fluids are affected by the method used for specifying the performance of the heat exchangers. Four different methods were included in the assessment, which assumed that the organic Rankine cycle systems were characterized by the same values of: (1) the minimum pinch point temperature difference of the heat exchangers; (2) the mean temperature difference of the heat exchangers; (3) the heat exchanger thermal capacity ( U ¯ A ); or (4) the heat exchanger surface area for all the considered working fluids. The second and third methods took into account the temperature difference throughout the heat transfer process, and provided the insight that the advantages of mixtures are more pronounced when large heat exchangers are economically feasible to use. The first method was incapable of this, and deemed to result in optimistic estimations of the benefits of using zeotropic mixtures, while the second and third method were deemed to result in conservative estimations. The fourth method provided the additional benefit of accounting for the degradation of heat transfer performance of zeotropic mixtures. In a net power output based performance ranking of 30 working fluids, the first method estimates that the increase in the net power output of zeotropic mixtures compared to their best pure fluid components is up to 13.6%. On the other hand, the third method estimates that the increase in net power output is only up to 2.56% for zeotropic mixtures compared to their best pure fluid components.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3615 ◽  
Author(s):  
James Bull ◽  
James M. Buick ◽  
Jovana Radulovic

Approximately 45% of power generated by conventional power systems is wasted due to power conversion process limitations. Waste heat recovery can be achieved in an Organic Rankine Cycle (ORC) by converting low temperature waste heat into useful energy, at relatively low-pressure operating conditions. The ORC system considered in this study utilises R-1234yf as the working fluid; the work output and thermal efficiency were evaluated for several operational pressures. Plate and shell and tube heat exchangers were analysed for the three sections: preheater, evaporator and superheater for the hot side; and precooler and condenser for the cold side. Each heat exchanger section was sized using the appropriate correlation equations for single-phase and two-phase fluid models. The overall heat exchanger size was evaluated for optimal operational conditions. It was found that the plate heat exchanger out-performed the shell and tube in regard to the overall heat transfer coefficient and area.


Author(s):  
Edna Raimunda da Silva ◽  
Konstantinos G. Kyprianidis ◽  
Michael Säterskog ◽  
Ramiro G. Ramirez Camacho ◽  
Angie L. Espinosa Sarmiento

The present study describes the application of a preliminary design approach for the optimization of an organic Rankine cycle radial turbine. Losses in the nozzle the rotor have initially been modelled using a mean-line design approach. The work focuses on a typical small-scale application of 50 kW, and two working fluids, R245fa (1,1,1,3,3,-pentafluoropropane) and R236fa (1,1,1,3,3,3-hexafluoropropane) are considered for validation purposes. Real gas formulations have been used based on the NIST REFPROP database. The validation is based on a design from the literature, and the results demonstrate close agreement the reference geometry and thermodynamic parameters. The total-to-total efficiencies of the reference turbine designs were 72% and 79%. Following the validation exercise, an optimization process was performed using a controlled random search algorithm with the turbine efficiency set as the figure of merit. The optimization focuses on the R245fa working fluid since it is more suitable for the operating conditions of the proposed cycle, enables an overpressure in the condenser and allows higher system efficiency levels. The R236fa working fluid was also used for comparison with the literature, and the reason is the positive slope of the saturation curve, somehow is possible to work with lower temperatures. Key preliminary design variables such as flow coefficient, loading coefficient, and length parameter have been considered. While several optimized preliminary designs are available in the literature with efficiency levels of up to 90%, the preliminary design choices made will only hold true for machines operating with ideal gases, i.e. typical exhaust gases from an air-breathing combustion engine. For machines operating with real gases, such as organic working fluids, the design choices need to be rethought and a preliminary design optimization process needs to be introduced. The efficiency achieved in the final radial turbine design operating with R245fa following the optimization process was 82.4%. A three-dimensional analysis of the flow through the blade section using computational fluid dynamics was carried out on the final optimized design to confirm the preliminary design and further analyze its characteristics.


2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Sign in / Sign up

Export Citation Format

Share Document