Leader-Following Consensus Over Acyclic Switching Digraphs

Author(s):  
Changran He ◽  
Jie Huang

Abstract The existing results on the leader-following consensus problem for linear continuous-time multi-agent systems over jointly connected switching digraphs rely on the assumption that the system matrices do not have eigenvalues with positive real parts. In this paper, to remove this assumption, we first establish a stability result for a class of linear switched systems. Based on this, we show that the leader-following consensus problem for linear multi-agent systems with general system modes over jointly connected switching digraphs is solvable if the digraphs are acyclic. Moreover, the leader-following consensus can be achieved at a preassigned but arbitrarily fast convergence rate. A numerical example is provided to illustrate our design.

Author(s):  
Yangzhou Chen ◽  
Guangyue Xu ◽  
Jingyuan Zhan

This paper studies the leader-following state consensus problem for heterogeneous linear multi-agent systems under fixed directed communication topologies. First, we propose a consensus protocol consisting of four parts for high-order multi-agent systems, in which different agents are allowed to have different gain matrices so as to increase the degree of design freedom. Then, we adopt a state linear transformation, which is constructed based on the incidence matrix of a directed spanning tree of the communication topology, to equivalently transform the state consensus problem into a partial variable stability problem. Meanwhile, the results of the partial variable stability theory are used to derive a sufficient and necessary consensus criterion, expressed as the Hurwitz stability of a real matrix. Then, this criterion is further expressed as a bilinear matrix inequality condition, and, based on this condition, an iterative algorithm is proposed to find the gain matrices of the protocol. Finally, numerical examples are provided to verify the effectiveness of the proposed protocol design method.


Automatica ◽  
2020 ◽  
Vol 115 ◽  
pp. 108899 ◽  
Author(s):  
Christopher D. Cruz-Ancona ◽  
Rafael Martínez-Guerra ◽  
Claudia A. Pérez-Pinacho

2017 ◽  
Vol 40 (5) ◽  
pp. 1529-1537 ◽  
Author(s):  
Muhammad Iqbal ◽  
John Leth ◽  
Trung D Ngo

In this paper, we solve the leader-following consensus problem using a hierarchical nearly cyclic pursuit (HNCP) strategy for multi-agent systems. We extend the nearly cyclic pursuit strategy and the two-layer HNCP to the generalized L-layer HNCP that enables the agents to rendezvous at a point dictated by a beacon. We prove that the convergence rate of the generalized L-layer HNCP for the leader-following consensus problem is faster than that of the nearly cyclic pursuit. Simulation results demonstrate the effectiveness of the proposed method.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 650
Author(s):  
Ricardo Almeida ◽  
Ewa Girejko ◽  
Snezhana Hristova ◽  
Agnieszka Malinowska

This paper studies the leader-following consensus problem in continuous-time multi-agent networks with communications/updates occurring only at random times. The time between two consecutive controller updates is exponentially distributed. Some sufficient conditions are derived to design the control law that ensures the leader-following consensus is asymptotically reached (in the sense of the expected value of a stochastic process). The numerical examples are worked out to demonstrate the effectiveness of our theoretical results.


2019 ◽  
Vol 9 (20) ◽  
pp. 4208 ◽  
Author(s):  
Huaitao Shi ◽  
Maxiao Hou ◽  
Yuhou Wu

This paper solves the leader-following consensus problem for a class of second-order multi-agent systems with input quantized by a newly proposed adaptive dynamic quantizer. The novel dynamic quantizer is an adaptive quantizer that combines the logarithmic quantizer and the uniform quantizer by introducing dynamic gain parameters to achieve quantizer adaptive adjustment. It has advantages of logarithmic, uniform, and adaptive dynamic quantizers in ensuring reducible communication expenses and acceptable quantizer errors for better system performance. On this basis, we transform the guide way climbing frame (GWCF) under ideal conditions into a second-order multi-agent system and solve the motion synchronization problem of GWCF. Finally, we illustrate our approach by numerical examples.


2017 ◽  
Vol 233 ◽  
pp. 52-60 ◽  
Author(s):  
Christopher D. Cruz-Ancona ◽  
Rafael Martínez-Guerra ◽  
Claudia A. Pérez-Pinacho

Sign in / Sign up

Export Citation Format

Share Document