Exact Solution of the Start-Up Electroosmotic Flow of Generalized Maxwell Fluids in Triangular Microducts

Author(s):  
F.Talay Akyildiz ◽  
Dennis A. Siginer

Abstract Unsteady electroosmotic flow of generalized Maxwell fluids in triangular microducts is investigated. The governing equation is formulated with Caputo-Fabrizio time-fractional derivatives whose orders are distributed in the interval [0, 1). The linear momentum and the Poisson-Boltzmann equations are solved analytically in tandem in the triangular region with the help of the Helmholtz eigenvalue problem and Laplace transforms. The analytical solution developed is exact. The solution technique we use is new, leads to exact solutions, is completely different from those available in the literature and is applicable to other similar problems. The new expression for the velocity field displays experimentally observed 'velocity overshoot' as opposed to existing analytical studies none of which can predict the overshoot phenomenon. We show that when Caputo-Fabrizio time-fractional derivatives approach unity the exact solution for the classical upper convected Maxwell fluid is obtained. The presence of elasticity in the constitutive structure alters the Newtonian velocity profiles drastically. The influence of pertinent parameters on the flow field is explored.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoyi Guo

Based on a modified Darcy law, the decay of potential vortex and diffusion of temperature in a generalized Oldroyd-B fluid with fractional derivatives through a porous medium is studied. Exact solutions of the velocity and temperature fields are obtained in terms of the generalized Mittag-Leffler function by using the Hankel transform and discrete Laplace transform of the sequential fractional derivatives. One of the solutions is the sum of the Newtonian solutions and the non-Newtonian contributions. As limiting cases of the present solutions, the corresponding solutions of the fractional Maxwell fluid and classical Maxwell fluids are given. The influences of the fractional parameters, material parameters, and the porous space on the decay of the vortex are interpreted by graphical results.


2014 ◽  
Vol 548-549 ◽  
pp. 216-223
Author(s):  
Ze Yin ◽  
Yong Jun Jian ◽  
Long Chang ◽  
Ren Na ◽  
Quan Sheng Liu

In this paper, we represent analytical solutions of transient velocity for electroosmotic flow (EOF) of generalized Maxwell fluids through both micro-parallel channel and micro-tube using the method of Laplace transform. We solve the problem including the linearized Poisson-Boltzmann equation, the Cauchy momentum equation and generalized Maxwell constitutive equation. By numerical calculation, the results show that the EOF velocity is greatly depends on oscillating Reynolds number and normalized relaxation time.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 757
Author(s):  
Juan Escandón ◽  
David Torres ◽  
Clara Hernández ◽  
René Vargas

In this investigation, the transient electroosmotic flow of multi-layer immiscible viscoelastic fluids in a slit microchannel is studied. Through an appropriate combination of the momentum equation with the rheological model for Maxwell fluids, an hyperbolic partial differential equation is obtained and semi-analytically solved by using the Laplace transform method to describe the velocity field. In the solution process, different electrostatic conditions and electro-viscous stresses have to be considered in the liquid-liquid interfaces due to the transported fluids content buffer solutions based on symmetrical electrolytes. By adopting a dimensionless mathematical model for the governing and constitutive equations, certain dimensionless parameters that control the start-up of electroosmotic flow appear, as the viscosity ratios, dielectric permittivity ratios, the density ratios, the relaxation times, the electrokinetic parameters and the potential differences. In the results, it is shown that the velocity exhibits an oscillatory behavior in the transient regime as a consequence of the competition between the viscous and elastic forces; also, the flow field is affected by the electrostatic conditions at the liquid-liquid interfaces, producing steep velocity gradients, and finally, the time to reach the steady-state is strongly dependent on the relaxation times, viscosity ratios and the number of fluid layers.


2004 ◽  
Vol 39 (8) ◽  
pp. 1371-1377 ◽  
Author(s):  
P.M. Jordan ◽  
Ashok Puri ◽  
G. Boros

2021 ◽  
Vol 33 (12) ◽  
pp. 123113
Author(s):  
Xu Yang ◽  
Shaowei Wang ◽  
Moli Zhao ◽  
Yue Xiao

Ferrites ◽  
1982 ◽  
pp. 824-826
Author(s):  
C. M. Srivastava ◽  
M. J. Patni ◽  
N. S. Hanumantha Rao

Sign in / Sign up

Export Citation Format

Share Document