Electroosmotic flow of Maxwell fluid in a microchannel of isosceles right triangular cross section

2021 ◽  
Vol 33 (12) ◽  
pp. 123113
Author(s):  
Xu Yang ◽  
Shaowei Wang ◽  
Moli Zhao ◽  
Yue Xiao
2015 ◽  
Vol 32 (9) ◽  
pp. 1792 ◽  
Author(s):  
Yuki Yamaguchi ◽  
Seung-Woo Jeon ◽  
Bong-Shik Song ◽  
Yoshinori Tanaka ◽  
Takashi Asano ◽  
...  

Author(s):  
Hongjun Song ◽  
Xie-Zhen Yin ◽  
Dawn J. Bennett

The analysis of fluid mixing in microfluidic systems is useful for many biological and chemical applications at the micro scale such as the separation of biological cells, chemical reactions, and drug delivery. The mixing of fluids is a very important factor in chemical reactions and often determines the reaction velocity. However, the mixing of fluids in microfluidics tends to be very slow, and thus the need to improve the mixing effect is a critical challenge for the development of the microfluidic systems. Micromixers can be classified into two types, active micromixers and passive micromixers. Passive micromixers depend on changing the structure and shape of microchannels in order to generate chaotic advection and to increase the mixing area. Thus, the mixing effect is enhanced without any help from external forces. Although passive micromixers have the advantage of being easily fabricated and requiring no external energy, there are also some disadvantages. For example, passive mixers often lack flexibility and power. Passive mixers rely on the geometrical properties of the channel shapes to induce complicated fluid particle trajectories thereby enhancing the mixing effect. On the other hand, active micromixers induce a time-dependent perturbation in the fluid flow. Active micromixers mainly use external forces for mixing including ultrasonic vibration, dielectrophoresis, magnetic force, electrohydrodynamic, and electroosmosis force. However, the complexity of their fabrication limits the application of active micromixers. In this paper we present a novel electroosmotic micromixer using the electroosmotic flow in the cross section to enhance the mixing effect. A DC electric field is applied to a pair of electrodes which are placed at the bottom of the channel. A transverse flow is generated in the cross section due to electroosmotic flow. Numerical simulations are investigated using a commercial software Fluent® which demonstrates how the device enhances the mixing effect. The mixing effect is increased when the magnitude of the electric field increased. The influences of Pe´clet number are also discussed. Finally, a simple fabrication using polymeric materials such as SU-8 and PDMS is presented.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Morteza Sadeghi ◽  
Arman Sadeghi ◽  
Mohammad Hassan Saidi

Adopting the Navier slip conditions, we analyze the fully developed electroosmotic flow in hydrophobic microducts of general cross section under the Debye–Hückel approximation. The method of analysis includes series solutions which their coefficients are obtained by applying the wall boundary conditions using the least-squares matching method. Although the procedure is general enough to be applied to almost any arbitrary cross section, eight microgeometries including trapezoidal, double-trapezoidal, isosceles triangular, rhombic, elliptical, semi-elliptical, rectangular, and isotropically etched profiles are selected for presentation. We find that the flow rate is a linear increasing function of the slip length with thinner electric double layers (EDLs) providing higher slip effects. We also discover that, unlike the no-slip conditions, there is not a limit for the electroosmotic velocity when EDL extent is reduced. In fact, utilizing an analysis valid for very thin EDLs, it is shown that the maximum electroosmotic velocity in the presence of surface hydrophobicity is by a factor of slip length to Debye length higher than the Helmholtz–Smoluchowski velocity. This approximate procedure also provides an expression for the flow rate which is almost exact when the ratio of the channel hydraulic diameter to the Debye length is equal to or higher than 50.


2018 ◽  
Vol 8 (9) ◽  
pp. 1553 ◽  
Author(s):  
Ming Li ◽  
Gong Chen ◽  
Ru Huang

In this paper, we present a gate-all-around silicon nanowire transistor (GAA SNWT) with a triangular cross section by simulation and experiments. Through the TCAD simulation, it was found that with the same nanowire width, the triangular cross-sectional SNWT was superior to the circular or quadrate one in terms of the subthreshold swing, on/off ratio, and SCE immunity, which resulted from the smallest equivalent distance from the nanowire center to the surface in triangular SNWTs. Following this, we fabricated triangular cross-sectional GAA SNWTs with a nanowire width down to 20 nm by TMAH wet etching. This process featured its self-stopped etching behavior on a silicon (1 1 1) crystal plane, which made the triangular cross section smooth and controllable. The fabricated triangular SNWT showed an excellent performance with a large Ion/Ioff ratio (~107), low SS (85 mV/dec), and preferable DIBL (63 mV/V). Finally, the surface roughness mobility of the fabricated device at a low temperature was also extracted to confirm the benefit of a stable cross section.


Sign in / Sign up

Export Citation Format

Share Document