Robust topology optimization of graphene platelets reinforced functionally graded materials considering hybrid bounded uncertainties

2021 ◽  
pp. 1-35
Author(s):  
Jin Cheng ◽  
Wei Lu ◽  
Yibing Lou ◽  
Weifei Hu ◽  
Zhenyu Liu ◽  
...  

Abstract An efficient scheme for the robust topology optimization considering hybrid bounded uncertainties (RTOHBU) is proposed for the graphene platelets (GPLs) reinforced functionally graded materials (FGMs). By introducing the concept of the layer-wise FGMs, the properties of the GPLs reinforced FGMs are calculated based on the Halpin-Tsai micromechanics model. The practical boundedness of probabilistic variables is naturally ensured by utilizing a generalized Beta distribution in constructing the robust topology optimization model. To address the issue of lacking the information of critical loads in existing topology optimization approaches considering hybrid uncertainties, a gradient-attributed search is carried out at first based on the hypothesis of linear elasticity to determine the critical loads leading to the worst structural performance. Subsequently, the statistical characteristics of the objective structural performance under such critical loads are efficiently evaluated by integrating the univariate dimension reduction method and the Gauss-Laguerre quadrature, the accuracy of which is verified by the comparison analysis utilizing the results of Monte Carlo simulation as references. Furthermore, a novel realization vector set is constructed for the bounded probabilistic uncertainties to parallelize the sensitivity analysis and accelerate the optimization process. All the proposed innovations are integrated into the robust topology optimization scheme, the effectiveness and efficiency of which are verified by three illustrative examples.

Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Author(s):  
Benjamin Wassermann ◽  
Nina Korshunova ◽  
Stefan Kollmannsberger ◽  
Ernst Rank ◽  
Gershon Elber

AbstractThis paper proposes an extension of the finite cell method (FCM) to V-rep models, a novel geometric framework for volumetric representations. This combination of an embedded domain approach (FCM) and a new modeling framework (V-rep) forms the basis for an efficient and accurate simulation of mechanical artifacts, which are not only characterized by complex shapes but also by their non-standard interior structure. These types of objects gain more and more interest in the context of the new design opportunities opened by additive manufacturing, in particular when graded or micro-structured material is applied. Two different types of functionally graded materials (FGM) are considered: The first one, multi-material FGM is described using the inherent property of V-rep models to assign different properties throughout the interior of a domain. The second, single-material FGM—which is heterogeneously micro-structured—characterizes the effective material behavior of representative volume elements by homogenization and performs large-scale simulations using the embedded domain approach.


2021 ◽  
Vol 262 ◽  
pp. 113596
Author(s):  
Vasavi Boggarapu ◽  
Raghavendra Gujjala ◽  
Shakuntla Ojha ◽  
Sk Acharya ◽  
P. Venkateswara babu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document