scholarly journals Blade Envelopes Part II: Multiple Objectives and Inverse Design

2021 ◽  
pp. 1-21
Author(s):  
Chun Yui Wong ◽  
Pranay Seshadri ◽  
Ashley Scillitoe ◽  
Bryn Noel Ubald ◽  
Andrew Duncan ◽  
...  

Abstract Blade envelopes offer a set of data-driven tolerance guidelines for manufactured components based on aerodynamic analysis. In Part I of this two-part paper, a workflow for the formulation of blade envelopes is described and demonstrated. In Part II, this workflow is extended to accommodate multiple objectives. This allows engineers to prescribe manufacturing guidelines that take into account multiple performance criteria. The quality of a manufactured blade can be correlated with features derived from the distribution of primal flow quantities over the surface. We show that these distributions can be accounted for in the blade envelope using vector-valued models derived from discrete surface flow measurements. Our methods result in a set of variables that allows flexible and independent control over multiple flow characteristics and performance metrics, similar in spirit to inverse design methods. The augmentations to the blade envelope workflow presented in this paper are demonstrated on the LS89 turbine blade, focusing on the control of loss, mass flow and the isentropic Mach number distribution. Finally, we demonstrate how blade envelopes can be used to visualize invariant designs by producing a 3D render of the envelope using 3D modelling software.

1997 ◽  
Vol 119 (2) ◽  
pp. 310-319 ◽  
Author(s):  
Sang Woo Lee ◽  
Yong Beom Kim ◽  
Joon Sik Lee

Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate the flow characteristics and aerodynamic loss distributions of film-cooling jets with compound angle orientations. For a fixed inclination angle of the injection hole, measurements are performed at various orientation angles to the direction of the mainstream in the case of three velocity ratios of 0.5, 1.0, and 2.0. Flow visualizations for the velocity ratio of 2.0 show that the increase in the orientation angle furnishes better film coverage on the test surface, but gives rise to large flow disturbances in the mainstream. A near-wall flow model has been proposed based on the surface flow visualizations. It has also been found from the flow measurements that as the orientation angle increases, a pair of count-errotating vortices turn to a single strong one, and the aerodynamic loss field is closely related to the secondary flow. Even in the case of the velocity ratio of 2.0, aerodynamic loss is produced within the jet region when the orientation angle is large. Regardless of the velocity ratio, the mass-averaged aerodynamic loss increases with increasing orientation angle, the effect of which on aerodynamic loss is pronounced when the velocity ratio is large.


Author(s):  
Sang Woo Lee ◽  
Yong Beom Kim ◽  
Joon Sik Lee

Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate the flow characteristics and aerodynamic loss distributions of film-cooling jets with compound angle orientations. For a fixed inclination angle of the injection hole, measurements are performed at various orientation angles to the direction of the mainstream in the case of three velocity ratios of 0.5, 1.0 and 2.0. Flow visualizations for the velocity ratio of 2.0 show that the increase in the orientation angle furnishes better film coverage on the test surface, but gives rise to large flow disturbances in the mainstream. A near-wall flow model has been proposed based on the surface flow visualizations. It has also been found from the flow measurements that as the orientation angle increases, a pair of counter-rotating vortices turn to a single strong one, and the aerodynamic loss field is closely related to the secondary flow. Even in the case of the velocity ratio of 2.0, aerodynamic loss is produced within the jet region when the orientation angle is large. Regardless of the velocity ratio, the mass-averaged aerodynamic loss increases with increasing orientation angle, the effect of which on aerodynamic loss is pronounced when the velocity ratio is large.


Sign in / Sign up

Export Citation Format

Share Document