aerodynamic loss
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2128 (1) ◽  
pp. 012029
Author(s):  
Mostafa Mahmoud ◽  
S. Shaaban

Abstract One-dimensional modeling and prediction of the centrifugal compressor performance are challenging as they require conservation equations and empirical and semi-empirical correlations. Therefore, there is a need to perform a consolidated study of the compressor aerodynamic loss models to conclude the importance of each loss to the compressor performance modeling. Accordingly, the purpose of this paper is to examine the effect of each aerodynamic loss on the compressor performance and explore more about which loss could have a negligible effect on the compressor performance. A MATLAB code was developed to predict the performance of five different small turbocharger centrifugal compressors at different geometric and operating conditions. The developed code was validated using the available experimental data of the investigated compressors. A sensitivity analysis methodology was performed using the validated code to check the effect of ten aerodynamic losses for the impeller and volute sections on the compressor performance. This paper concludes that impeller disk friction, blade loading, and clearance losses have a negligible effect on the small turbocharger vanless diffuser compressor performance.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6112
Author(s):  
Qiyu Ying ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Can Ma ◽  
Jinlan Gou ◽  
...  

Supercritical carbon dioxide (S-CO2) Brayton cycle system is a promising closed-loop energy conversion system frequently mentioned in the automotive and power generation field in recent years. To develop a suitable design methodology for S-CO2 turbines with better performance, an understanding of the vortex flow patterns and associated aerodynamic loss inside a S-CO2 turbine is essential. In this paper, a hundred-kilowatt level S-CO2 axial turbine is designed and investigated using a three-dimensional transient viscous flow simulation. The NIST Span and Wagner equation of state model that considers the real gas effects is utilized to estimate the thermodynamic properties of the supercritical fluid. The numerical methods are experimentally validated. The results indicates that the aspect ratio and tip-to-hub ratio are different in the S-CO2 turbine from that in the gas turbine, and the vortex flow patterns are influenced notably by these geometrical parameters. Both the vortex structure and moving tracks of passage vortices are changed as a result of large centrifugal force. An interaction between tip leakage vortex and hub passage vortex is observed in the impeller passage and its formation and development mechanism are revealed. To further explore the aerodynamic loss mechanism caused by vortex interaction, the energy loss in the impeller passage is analyzed with the enstrophy dissipation method, which can not only accurately calculate the energy loss but also estimate how the vortical motions occur. It is found that the enstrophy and energy loss can be effectively reduced by vortex interaction between tip leakage vortex and hub passage vortex. The results in this study would increase the knowledge of vortex flow patterns in S-CO2 turbine and the proposed enstrophy production method can be used intuitively to provide a reference for flow vortical motion study in turbines.


2021 ◽  
Author(s):  
Jin-Sol Jung ◽  
Inkyom Kim ◽  
Jin Sung Joo ◽  
Sang-woo Lee

2021 ◽  
pp. 1-12
Author(s):  
Joao Vieira ◽  
John D Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Kai Zhou ◽  
Chao Zhou

Abstract Experimental and numerical methods were used to investigate the aerodynamic effects of a near-casing streamwise incoming vortex flow on the tip leakage flow of different tip geometries in an unshrouded high-pressure turbine. A flat tip, a cavity tip, and a suction side winglet tip were investigated with the quasi-steady method first. A swirl generator was used to produce the incoming vortex in a linear cascade. In the flat tip case, the incoming vortex interacts with the tip leakage flow and the two vortices gradually mix together. The tip leakage loss is reduced due to the streamwise momentum supplement within the tip leakage vortex core. For the cavity tip, the tip leakage vortex appears at a location relatively downstream in the blade passage compared with the flat tip and no evident vortex interaction is observed. The incoming vortex causes extra viscous dissipation within the blade passage and increases the aerodynamic loss for the cavity tip. For the winglet tip, the extension of the suction side winglet tends to push the incoming vortex and the tip leakage vortex move and mix together, thus reducing the loss. Then, the effects of periodic unsteady vortex transportations were investigated by conducting unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations. The incoming vortex is stretched as it transports downstream. The unsteady incoming vortex is easier to interact with the tip leakage vortex for the winglet tip. As a result, the winglet tip is the most efficient tip design with unsteady incoming flow among the three tips and achieves a 3.7% reduction of mixed-out loss coefficient compared with the flat tip, larger than 2.8% reduction in the uniform inlet condition. The detailed loss mechanism is discussed in this paper.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1959
Author(s):  
Charlotte Bay Hasager ◽  
Flemming Vejen ◽  
Witold Robert Skrzypiński ◽  
Anna-Maria Tilg

Leading-edge erosion at wind turbine blades cause a loss in profit for wind farm owners, in particular offshore. The characterization of the rain erosion environmental load at wind turbine blades is based on the long-term rain rate and wind speed observations at 10-minute resolutions at coastal stations around the North Sea, Baltic Sea, and inland. It is assumed that an IEA Wind 15 MW turbine is installed at each station. The leading-edge lifetime is found to increase from the South to the North along the German and Danish North Sea coastline from 1.4 to 2.8 years. In the Danish and German Baltic Sea, the lifetime in the West is shorter (~2 years) than further East (~3 to 4 years). It is recommended to use a time series of 10 years or longer because shorter time series most likely will cause an overestimation of the lifetime. The loss in profit due to leading-edge erosion can potentially be reduced by ~70% using the erosion-safe mode, i.e., reduce the tip speed during heavy rain events, to reduce blade erosion, aerodynamic loss, repair costs, and downtime during repair. The aerodynamic loss for the 18 stations is on average 0.46% of the annual energy production.


2021 ◽  
pp. 1-31
Author(s):  
Jin-sol Jung ◽  
Inkyom Kim ◽  
Jin Sung Joo ◽  
Sang-woo Lee

Abstract This paper presents aerodynamic loss data for five squealer configurations of a full squealer (FS), a pressure-side squealer (PS), a suction-side squealer (SS), a camberline squealer (CS), and a full-camberline squealer (FCS) in a low speed turbine cascade. In addition, tip thermal load data are also reported for the FS, PS, and SS tips. The results show that when h/s (tip clearance-to-span ratio) ≥ 0.96%, the mass-averaged loss for the FS tip decreases, has a minimum value, and then increases, as the squealer height (hst) increases. For h/s = 0.48%, however, the loss changes with hst/s is found to be minute. For the FS tip, the loss tends to increase, as the squealer thickness increases. Adding a camberline squealer to the FS tip is not beneficial in the loss reduction. When hst/s < 3.82% for h/s = 0.96%, the FS tip has the lowest mass-averaged loss, the SS tip has the second lowest loss, the PS tip has higher loss compared to the SS tip, and the CS tip loss is highest, regardless of hst/s. For h/s = 0.96%, the average tip thermal load for the FS tip is lower than the PS tip one but is higher than the SS tip one. Thus, the SS tip delivers the lowest average thermal load, irrespective of hst/s.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097490
Author(s):  
Fenghui Han ◽  
Zhe Wang ◽  
Yijun Mao ◽  
Jiajian Tan ◽  
Wenhua Li

Inlet chambers (IC) are the typical upstream component of centrifugal compressors, and inlet guide vanes in the IC have a great impact on its internal flow and aerodynamic loss, which will significantly influence the performance of the downstream compressor stages. In this paper, an experimental study was carried out on the flow characteristics inside a radial IC of an industrial centrifugal compressor, including five testing sections and 968 measuring points for two schemes with and without guide vanes. Detailed distributions of flow parameters on each section were obtained as well as the overall performance of the radial IC, and the causes of the flow loss inside the IC and the non-uniformity of flow parameters at the outlet section were investigated. Besides, numerical simulations were performed to further analyze the flow characteristics inside the radial IC. The experimental and numerical results indicate that, in the scheme without guide vanes, sudden expansions in the spiral channel and flow separations in the annular convergence channel are the major sources of flow loss and distortions generated in the radial IC; while in the scheme with guide vanes, the flow impacts, separations and wakes caused by the inappropriate design of guide vanes are the main reasons for the flow loss of the IC itself and the uneven flow distributions at the IC outlet.


Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


Sign in / Sign up

Export Citation Format

Share Document