mach number distribution
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 1-21
Author(s):  
Chun Yui Wong ◽  
Pranay Seshadri ◽  
Ashley Scillitoe ◽  
Bryn Noel Ubald ◽  
Andrew Duncan ◽  
...  

Abstract Blade envelopes offer a set of data-driven tolerance guidelines for manufactured components based on aerodynamic analysis. In Part I of this two-part paper, a workflow for the formulation of blade envelopes is described and demonstrated. In Part II, this workflow is extended to accommodate multiple objectives. This allows engineers to prescribe manufacturing guidelines that take into account multiple performance criteria. The quality of a manufactured blade can be correlated with features derived from the distribution of primal flow quantities over the surface. We show that these distributions can be accounted for in the blade envelope using vector-valued models derived from discrete surface flow measurements. Our methods result in a set of variables that allows flexible and independent control over multiple flow characteristics and performance metrics, similar in spirit to inverse design methods. The augmentations to the blade envelope workflow presented in this paper are demonstrated on the LS89 turbine blade, focusing on the control of loss, mass flow and the isentropic Mach number distribution. Finally, we demonstrate how blade envelopes can be used to visualize invariant designs by producing a 3D render of the envelope using 3D modelling software.


Author(s):  
S Planelles ◽  
S Borgani ◽  
V Quilis ◽  
G Murante ◽  
V Biffi ◽  
...  

Abstract Cosmological shock waves are ubiquitous to cosmic structure formation and evolution. As a consequence, they play a major role in the energy distribution and thermalization of the intergalactic medium (IGM). We analyse the Mach number distribution in the Dianoga simulations of galaxy clusters performed with the SPH code GADGET-3. The simulations include the effects of radiative cooling, star formation, metal enrichment, supernova and active galactic nuclei feedback. A grid-based shock-finding algorithm is applied in post-processing to the outputs of the simulations. This procedure allows us to explore in detail the distribution of shocked cells and their strengths as a function of cluster mass, redshift and baryonic physics. We also pay special attention to the connection between shock waves and the cool-core/non-cool core (CC/NCC) state and the global dynamical status of the simulated clusters. In terms of general shock statistics, we obtain a broad agreement with previous works, with weak (low-Mach number) shocks filling most of the volume and processing most of the total thermal energy flux. As a function of cluster mass, we find that massive clusters seem more efficient in thermalising the IGM and tend to show larger external accretion shocks than less massive systems. We do not find any relevant difference between CC and NCC clusters. However, we find a mild dependence of the radial distribution of the shock Mach number on the cluster dynamical state, with disturbed systems showing stronger shocks than regular ones throughout the cluster volume.


Author(s):  
Haijun Deng ◽  
Bo Xiong ◽  
Xinfu Luo ◽  
Shaozun Hong ◽  
Qi Liu ◽  
...  

The axial Mach number distribution of the core flow for model in a transonic wind tunnel is an important index to evaluate the performance of the flow field, which is usually measured by the centerline probe. In order to simulate the incoming flow characteristics without interference, the probe will extend from the support section to the shrinkage section, so the probe usually must has longer inches, more static pressure measuring points and smaller blockage requirements. In order to study the influence of the points of the centerline probe on the uniformity distribution of flow field, a new static pressure probe is designed, which is smaller and shorter than the centerline probe. On the basis of the stability of the flow field, the Mach number distribution of the flow field measured by the static pressure probe which is driven by the moving measuring mechanism. The characteristics of the measured values are studied by wind tunnel test. The results show that: when Ma ≤ 0.95, the overall distribution and value of Mach number obtained by the static pressure probe is basically the same as those obtained by the centerline probe, but some flow field details, which mainly shows that Mach number of the static pressure probe has smaller fluctuation, higher accuracy and better uniformity index.


Author(s):  
Lawal Ismail Olusegun ◽  
Ogundola Abayomi Cyril ◽  
Ajobiewe Victor Kayode ◽  
Ikare Johnson Oluwasegun

Comparing the complexity of the hardware and the control system, cold gas micro thrusters are much more simplified than other propulsion thrusters. Numerical calculation was carried out for mass requirement, mass flow rate, valves, feed system and computational fluid dynamics with finite element analysis was used for tank, pipe and nozzle design. Four different materials: Structural steel, Stainless steel, Aluminum and Titanium, were considered for tank design. They were subjected to the same conditions for four different tank geometries. The propulsion system was designed to be able to produce between 1 and 2 minutes of continuous thrust and the sudden impulses of between 0.8 and 1 seconds of gas expulsion, with over 20 impulses as desired thrust time. The mass and the volume needed for multiple tank geometries, concepts, and materials were determined. The main performance characteristics of the micro thrusters evaluated were Pressure Distribution, Velocity Profile, Temperature Distribution, Nozzle Efficiency and the corresponding Mach Number Distribution. This work is to provide a stable and controllable platform for testing equipment that can be ultimately applied to space applications.  


Author(s):  
Shenghui Zhang ◽  
Shuiting Ding ◽  
Tian Qiu

Abstract One of major safety requirements from current airworthiness regulations is that the probability of hazardous engine effects should not occur exceed 10−7 per engine flight hour even in the event of component failure. Service experience of aeroengines indicates that turbine blade fracture is a common fault whose probability is far more than 10−7 per engine flight hour. It is obvious that overall engine system will be affected by blade failure. So, aerodynamic performance investigation in the event of one blade fracture failure has been assessed in the current study. With ANSYS-CFX, numerical model of GE-E3 (Energy Efficient Engine) high pressure turbine was established according to literature data. By comparing surface Mach number distribution at mid-span of vane in the first stage obtained numerically and experimentally, the most efficient turbulence model, i.e., the SST k-ω model, was identified. Based on the model, the 3-dimensional flow simulations under two configurations, full wheel geometry GE-E3 high pressure turbine without and with one blade fracture failure have been achieved. The following conclusions were drawn from 3-dimensional simulations: firstly, as for GE-E3 high pressure turbine, the effect of single turbine blade failure on turbine characteristics is slight; secondly, with blade loading coefficient as a criterion which is used for judging whether blade is affected, five blades which are significantly affected can be identified, and the surface pressure distributions of these five affected blades alter to varying degrees, accord-ingly, these film outflow static pressure characteristics alter as well; thirdly, after turbine blade fails, airflow accelerates violently along the suction side of downstream blade closest to failed blade and separates, however, air flow can not expand efficiently along the pressure side of upstream blade nearest to failed blade.


Author(s):  
Maximilian Passmann ◽  
Stefan aus der Wiesche ◽  
Eugeny Y. Kenig

Abstract Low speed and high speed flow phenomena in pillow plate channels are considered. High speed flows were investigated by means of analytical methods and fully three-dimensional computational fluid dynamics (CFD) simulations. The theoretical analysis indicated that a Fanno-type flow model described high speed flow behavior in pillow plate channels reasonably well. Since only wavy walls with smooth profiles were involved, linearized gas dynamics was applied in order to derive similarity laws for the high speed flows. The detailed CFD analysis was used to support the assumption of a Fanno-type flow. The effects of the wavy wall structures on pressure drop and Mach number distribution within the flow path were investigated in detail. The present analysis demonstrates that pillow plate heat exchangers represent promising candidates for high speed turbo machinery applications.


2018 ◽  
Vol 611 ◽  
pp. L3 ◽  
Author(s):  
Vlas Sokolov ◽  
Ke Wang ◽  
Jaime E. Pineda ◽  
Paola Caselli ◽  
Jonathan D. Henshaw ◽  
...  

High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s−1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.


2017 ◽  
Vol 41 (1) ◽  
pp. 69-84
Author(s):  
Saad Islam ◽  
Md Shafiqul Islam

Gimbaled thrust vectoring nozzles are employed in Solid Rocket Motors (SRM) to account for the aspects of maneuverability of the flight vehicle. The flow field of such a solid pulsed rocket motor is explored numerically (from dome-closeout onward) by solving Reynolds-averaged Navier-Stokes equations with Menter’s Shear Stress Transport (SST) k - ? turbulence model using a Computational Fluid Dynamics (CFD) tool. Parametric studies are carried out to find out the thermochemical and hydrodynamic characteristics of the hot gas in the rocket motor nozzle. The performances of different supersonic and subsonic sections were studied in terms of the hydrodynamic aspects such as static pressure and Mach number distribution. It is observed that the tradeoff of implementing thrust vectoring mechanism amounts to an additional pressure loss of 10.06% in the rocket motor. Such analyses are specific to certain types of Short Range Ballistic Missiles (SRBM) having solid state propellant (primary stage) in radial boost, end burning pulsed configuration with exacting demands on maneuverability and control implied upon payload and mission criterion.Journal of Bangladesh Academy of Sciences, Vol. 41, No. 1, 69-84, 2017


Author(s):  
Teng Cao ◽  
Nagabhushana Rao Vadlamani ◽  
Paul G. Tucker ◽  
Angus R. Smith ◽  
Michal Slaby ◽  
...  

In this paper, we present an extensive numerical study on the interaction between the downstream fan and the flow separating over an intake under high incidence. The objectives of this investigation are twofold: (a) to gain qualitative insight into the mechanism of fan–intake interaction and (b) to quantitatively examine the effect of the proximity of the fan on the inlet distortion. The fan proximity is altered using the key design parameter, L/D, where D is the diameter of the intake, and L is the distance of the fan from the intake lip. Both steady and unsteady Reynolds-averaged numerical simulations (RANS) were carried out. For the steady calculations, a low-order fan model has been used, while a full 3D geometry has been used for the unsteady RANS. The numerical methodology is also thoroughly validated against the measurements for the intake-only and fan-only configurations on a high bypass ratio turbofan intake and fan, respectively. To systematically study the effect of fan on the intake separation and explore the design criteria, a simplified intake–fan configuration has been considered. In this fan–intake model, the proximity of the fan to the intake separation (L/D) can be conveniently altered without affecting other parameters. The key results indicate that, depending on L/D, the fan has either suppressed the level of the postseparation distortion or increased the separation-free operating range. At the lowest L/D (∼0.17), around a 5 deg increase in the separation-free angle of incidence was achieved. This delay in the separation-free angle of incidence decreased with increasing L/D. At the largest L/D (∼0.44), the fan was effective in suppressing the postseparation distortion rather than entirely eliminating the separation. Isentropic Mach number distribution over the intake lip for different L/D's revealed that the fan accelerates the flow near the casing upstream of the fan face, thereby decreasing the distortion level in the immediate vicinity. However, this acceleration effect decayed rapidly with increasing upstream distance from the fan-face.


Sign in / Sign up

Export Citation Format

Share Document