The Effect of Ball Milling on Magnetic Properties of Iron-Based Nanocrystalline Magnetic Powder Core

Author(s):  
Jian Tang ◽  
Fa-Zeng Lian ◽  
Cao-Wei Lu
2011 ◽  
Vol 298 ◽  
pp. 173-178 ◽  
Author(s):  
Qing Da Li ◽  
X.W. Dong ◽  
T.X. Liu ◽  
Jun Hua You ◽  
Fa Zeng Lian

The Fe-Si-Al soft magnetic composites were produced by cold pressing of water-atomized Fe-Si-Al powder using organic binder. The effect of shaping pressure, annealing temperature, magnetic annealing and dielectric content on properties of Fe-Si-Al soft magnetic composites was investigated. The results showed that increasing shaping pressure increases density and radial crushing strength of Fe-Si-Al soft magnetic cores, and decreases coercivity and total loss. Increasing annealing temperature can increase effective permeability and decrease total loss owing to decreasing hysteresis loss, and over-annealing (>660°C) can deteriorate magnetic properties. The magnetic annealing can decrease total loss of Fe-Si-Al magnetic powder core. Increasing dielectric content can reduce the eddy current loss of Fe-Si-Al magnetic powder core and decrease the real part of permeability. Fe-Si-Al magnetic powder core with shaping pressure of 1800 MPa, annealing temperature of 660 °C and dielelctric content of 0.7% presented the optimum magnetic properties with an effective permeability of 127, a total loss of 78mW/cm3 and a radial crushing strength of 18MPa.


2019 ◽  
Vol 8 (5) ◽  
pp. 4995-5003 ◽  
Author(s):  
J.A. Betancourt-Cantera ◽  
F. Sánchez-De Jesús ◽  
A.M. Bolarín-Miró ◽  
G. Torres-Villaseñor ◽  
L.G. Betancourt-Cantera

2003 ◽  
Vol 24 (1-3) ◽  
pp. 93-96 ◽  
Author(s):  
S. R. Mishra ◽  
G. J. Long ◽  
F. Grandjean ◽  
R. P. Hermann ◽  
S. Roy ◽  
...  

2011 ◽  
Vol 25 (2) ◽  
pp. 025010 ◽  
Author(s):  
Massimiliano Polichetti ◽  
Danilo Zola ◽  
Jian-Lin Luo ◽  
Gen-Fu Chen ◽  
Zheng Li ◽  
...  

2006 ◽  
Vol 45 ◽  
pp. 1423-1428
Author(s):  
Somsak Woramongconchai ◽  
Chatchawan Lohitvisat ◽  
Aree Wichainchai

The effect of magnetic powders and powders loading on magnetic properties and mechanical properties of magnetic rubbers were studied. The natural rubber with magnetic powders, Barium ferrite, Neodymium iron boron, were used as starting materials to prepare magnetic rubbers. Barium ferrite (BaO.6F2O3) powders had been sintered at 1285 oC for 30 hours to improve its crystal structure. The physical properties of magnetic rubbers, residual flux density (Br), coercive force (Hc), maximum energy product (BHmax), hardness and density, had a trend to increase as enhancing magnetic powders loading. However, some properties such as, intrinsic coercive force (Hci), tensile strength and elongation at break, had a trend to decrease when the magnetic powder loading was increased. Magnetic properties of the anisotropic type, sintered powders, were higher than isotropic type, non-sintered powders, except the Hci because anisotropic magnetic rubber indicated crystal orientation in the same direction.


2007 ◽  
Author(s):  
Katsunori Soejima ◽  
Tsuyoshi Higuchi ◽  
Takashi Abe ◽  
Tadashi Hirayama

Sign in / Sign up

Export Citation Format

Share Document