Engineering Using Lattice Boltzmann Method to Investigate the Flow and Entropy Generation Inside a T-Type Micromixer with a Porous Block

2013 ◽  
Vol 24 (09) ◽  
pp. 1350060 ◽  
Author(s):  
M. NAZARI ◽  
M. H. KAYHANI ◽  
R. MOHEBBI

The main goal of the present study is to investigate the heat transfer enhancement in a channel partially filled with an anisotropic porous block (Porous Foam) using the lattice Boltzmann method (LBM). Combined pore level simulation of flow and heat transfer is performed for a 2D channel which is partially filled with square obstacles in both ordered and random arrangements by LBM which is not studied completely in the literature. The effect of the Reynolds number, different arrangements of obstacles, blockage ratio and porosity on the velocity and temperature profiles inside the porous region are studied. The local and averaged Nusselt numbers on the channel walls along with the respective confidence interval and comparison between results of regular and random arrangements are presented for the first time. For constant porosity and block size, the maximum value of averaged Nusselt number in the porous block is obtained in the case of random arrangement of obstacles. Also, by decreasing the porosity, the value of averaged Nusselt number is increased. Heat transfer to the working fluids increases significantly by increasing the blockage ratio. Several blockage ratios with different arrangements are checked to obtain a correlation for the Nusselt number.


2019 ◽  
Vol 29 (12) ◽  
pp. 4746-4763 ◽  
Author(s):  
Qingang Xiong ◽  
Arash Khosravi ◽  
Narjes Nabipour ◽  
Mohammad Hossein Doranehgard ◽  
Aida Sabaghmoghadam ◽  
...  

Purpose This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus. Design/methodology/approach The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters. Findings The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented. Originality/value The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.


Author(s):  
HamidReza KhakRah ◽  
Payam Hooshmand ◽  
David Ross ◽  
Meysam Jamshidian

Purpose The purpose of this paper is to investigate the compact finite-difference lattice Boltzmann method is used to simulate the free convection within a cavity. Design/methodology/approach The finite-difference discretization method enables the numerical simulations to be run when there are non-uniform and curvilinear grids with a finer near-wall grid resolution. Furthermore, the high-order method is applied in the numerical approach, which makes it possible to go with relatively coarse mesh in respect to simulations, which used classical lattice Boltzmann method. The configuration of the cavity is set to sine-walled square. In addition, the cavity is filled with Al2O3-water nanofluid, and the Koo–Kleinstreuer–Li model is used to estimate the properties of nanofluid. Findings The nanoparticle (Al2O3) concentration in the base fluid (water) is considered in a range of 0-0.04. The nanofluid flow and heat transfer are investigated in laminar regime with Rayleigh number in the range of 103-106. The second law analysis is used to study the effects of different governing parameters on the local and volumetric entropy generation. The Rayleigh number, configuration of the cavity and nanoparticle concentration are considered as the governing parameters. The results are mainly focused on the flow structure, temperature field, local and volumetric entropy generation and heat transfer performance. Originality/value The originality of this study is using of a modern numerical method supported by an accurate prediction for nanofluid properties to simulate the flow and heat transfer during natural convection in a cavity.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Aqeel Ashraf ◽  
Zhenling Liu ◽  
Emad Hasani Malekshah ◽  
Lioua Kolsi ◽  
Ahmed Kadhim Hussein

Purpose The purpose of the present work is to investigate the hydrodynamic and thermal performance of a thermal storage based on the numerical and experimental approaches using the lattice Boltzmann method and the experimental observation on the thermo-physical properties of the operating fluid. Design/methodology/approach For this purpose, the Al2O3 nanoparticle is added to the lubricant with four nanoparticle concentrations, including 0.1, 0.2, 0.4 and 0.6Vol.%. After preparing the nanolubricant samples, the thermal conductivity and dynamic viscosity of nanolubricant are measured using thermal analyzer and viscometer, respectively. Finally, the extracted data are used in the numerical simulation using provided correlations. In the numerical process, the lattice Boltzmann equations based on Bhatnagar–Gross Krook model are used. Also, some modifications are applied to treat with the complex boundary conditions. In addition, the second law analysis is used based on the local and total views. Findings Different types of results are reported, including the flow structure, temperature distribution, contours of local entropy generation, value of average Nusselt number, value of entropy generation and value of Bejan number. Originality/value The originality of this work is combining a modern numerical methodology with experimental data to simulate the convective flow for an industrial application.


Sign in / Sign up

Export Citation Format

Share Document