Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II — Effect of Outer Casing Relative Motion

Author(s):  
J. Tallman ◽  
B. Lakshminarayana

A pressure-correction based, 3D Navier-Stokes CFD code was used to simulate the effects of turbine parameters on the tip leakage flow and vortex in a linear turbine cascade to understand the detailed flow physics. A baseline case simulation of a cascade was first conducted in order to validate the numerical procedure with experimental measurements. The effects of realistic tip clearance spacing, inlet conditions, and relative endwall motion were then sequentially simulated, while maintaining previously modified parameters. With each additional simulation, a detailed comparison of the leakage flow’s direction, pressure gradient, and mass flow, as well as the leakage vortex and its roll-up, size, losses, location, and interaction with other flow features, was conducted. Part II of this two-part paper series focuses on the effect of relative motion of the outer casing on the leakage flow and vortex development. Casing relative motion resulted in less mass flow through the gap and a smaller leakage vortex. The structure of the aerothermal losses in the passage changed dramatically when the outer casing motion was incorporated, but the total losses in the passage remained very similar. Additional secondary flows that were seen near the casing are also discussed. A more thorough thesis on the research presented in this paper can be found at the World Wide Web address http://navier.aero.psu.edu/∼jat.

2000 ◽  
Vol 123 (2) ◽  
pp. 324-333 ◽  
Author(s):  
J. Tallman ◽  
B. Lakshminarayana

A pressure-correction based, 3D Navier-Stokes CFD code was used to simulate the effects of turbine parameters on the tip leakage flow and vortex in a linear turbine cascade to understand the detailed flow physics. A baseline case simulation of a cascade was first conducted in order to validate the numerical procedure with experimental measurements. The effects of realistic tip clearance spacing, inlet conditions, and relative endwall motion were then sequentially simulated, while maintaining previously modified parameters. With each additional simulation, a detailed comparison of the leakage flow’s direction, pressure gradient, and mass flow, as well as the leakage vortex and its roll-up, size, losses, location, and interaction with other flow features, was conducted. Part II of this two-part paper series focuses on the effect of relative motion of the outer casing on the leakage flow and vortex development. Casing relative motion results in less mass flow through the gap and a smaller leakage vortex. The structure of the aerothermal losses in the passage change dramatically when the outer casing motion was incorporated, but the total losses in the passage remained very similar. Additional secondary flows that are seen near the casing are also discussed.


Author(s):  
J. Tallman ◽  
B. Lakshminarayana

A pressure-correction based, 3D Navier-Stokes CFD code was used to simulate the effects of turbine parameters on the tip leakage flow and vortex in a linear turbine cascade to understand the detailed flow physics. A baseline case simulation of a cascade was first conducted in order to validate the numerical procedure with experimental measurements. The effects of realistic tip clearance spacing, inlet conditions, and relative endwall motion were then sequentially simulated, while maintaining previously modified parameters. With each additional simulation, a detailed comparison of the leakage flow’s direction, pressure gradient, and mass flow, as well as the leakage vortex and its roll-up, size, losses, location, and interaction with other flow features, was conducted. Part I of this two-part paper series focuses on the effect of reduced tip clearance height on the leakage flow and vortex. Reduced tip clearance resulted in less mass flow through the gap, a smaller leakage vortex, and less aerothermal losses in both the gap and the vortex. The shearing of the leakage jet and passage flow to which leakage vortex roll-up is usually attributed to was not observed in any of the simulations. Alternative explanations of the leakage vortex’s roll-up are presented. Additional secondary flows that were seen near the casing were also discussed. A more thorough thesis on the research presented in this paper can be found at the World Wide Web address http://navier.aero.psu.edu/∼jat.


2000 ◽  
Vol 123 (2) ◽  
pp. 314-323 ◽  
Author(s):  
J. Tallman ◽  
B. Lakshminarayana

A pressure-correction based, 3D Navier-Stokes CFD code was used to simulate the effects of turbine parameters on the tip leakage flow and vortex in a linear turbine cascade to understand the detailed flow physics. A baseline case simulation of a cascade was first conducted in order to validate the numerical procedure with experimental measurements. The effects of realistic tip clearance spacing, inlet conditions, and relative endwall motion were then sequentially simulated, while maintaining previously modified parameters. With each additional simulation, a detailed comparison of the leakage flow’s direction, pressure gradient, and mass flow, as well as the leakage vortex and its roll-up, size, losses, location, and interaction with other flow features, was conducted. Part I of this two-part paper focuses on the effect of reduced tip clearance height on the leakage flow and vortex. Reduced tip clearance results in less mass flow through the gap, a smaller leakage vortex, and less aerothermal losses in both the gap and the vortex. The shearing of the leakage jet and passage flow to which leakage vortex roll-up is usually attributed to is not observed in any of the simulations. Alternative explanations of the leakage vortex’s roll-up are presented. Additional secondary flows that are seen near the casing are also discussed.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
S. K. Krishnababu ◽  
P. J. Newton ◽  
W. N. Dawes ◽  
G. D. Lock ◽  
H. P. Hodson ◽  
...  

A numerical study has been performed to investigate the effect of tip geometry on the tip leakage flow and heat transfer characteristics in unshrouded axial flow turbines. Base line flat tip geometry and squealer type geometries, namely, double squealer or cavity and suction-side squealer, were considered. The performances of the squealer geometries, in terms of the leakage mass flow and heat transfer to the tip, were compared with the flat tip at two different tip clearance gaps. The computations were performed using a single blade with periodic boundary conditions imposed along the boundaries in the pitchwise direction. Turbulence was modeled using three different models, namely, standard k-ε, low Re k-ω, and shear stress transport (SST) k-ω, in order to assess the capability of the models in correctly predicting the blade heat transfer. The heat transfer and static pressure distributions obtained using the SST k-ω model were found to be in close agreement with the experimental data. It was observed that compared to the other two geometries considered, the cavity tip is advantageous both from the aerodynamic and from the heat transfer perspectives by providing a decrease in the amount of leakage, and hence losses, and average heat transfer to the tip. In general, for a given geometry, the leakage mass flow and the heat transfer to the tip increased with increase in tip clearance gap. Part II of this paper examines the effect of relative casing motion on the flow and heat transfer characteristics of tip leakage flow. In Part III of this paper the effect of coolant injection on the flow and heat transfer characteristics of tip leakage flow is presented.


1988 ◽  
Vol 110 (3) ◽  
pp. 329-338 ◽  
Author(s):  
A. Yamamoto

In order to study the loss generation mechanisms due to the tip-leakage flow in turbine rotor passages, extensive traverse measurements were made of the three-dimensional flows in a low-speed linear cascade for various tip-clearance sizes and for various cascade inlet flow angles (or incidences). Effects of the leakage flow on the cascade downstream flow fields and interactions between the leakage flow and the passage vortices are discussed in detail based on the traverse measurements and flow-visualization tests in terms of secondary flows and the associated losses. Other traverses were also performed of the tip-casing endwall flows both inside and outside the tip-clearance gap using a micro five-hole pitot tube to reveal the axial development of the interaction throughout the cascade passage. Overall loss characteristics of the present high-turning cascade with blunt leading and trailing edges are obtained and compared with those predicted by the Ainley–Mathieson method.


Author(s):  
S. K. Krishnababu ◽  
P. J. Newton ◽  
W. N. Dawes ◽  
G. D. Lock ◽  
H. P. Hodson ◽  
...  

A numerical study has been performed to investigate the effect of tip geometry on the tip leakage flow and heat transfer characteristics in unshrouded axial flow turbines. Baseline flat tip geometry and squealer type geometries namely double squealer or cavity and suction side squealer were considered. The performances of the squealer geometries, in terms of the leakage mass flow and heat transfer to the tip, were compared with the flat tip at two different tip clearance gaps. The computations were performed using a single blade with periodic boundary conditions imposed along the boundaries in the pitchwise direction. Turbulence was modelled using three different models namely standard k-ε, low Re k-ω and SST k-ω, in order to assess the capability of the models in correctly predicting the blade heat transfer. The heat transfer and static pressure distributions obtained using the SST k-ω model was found to be in close agreement with the experimental data. It was observed that compared to the other two geometries considered, the cavity tip is advantageous both from the aerodynamic and from the heat transfer perspectives by providing a decrease in the amount of leakage, and hence losses, and average heat transfer to the tip. In general, for a given geometry, the leakage mass flow and the heat transfer to the tip increased with increase in tip clearance gap. Part II of this paper examines the effect of relative casing motion on the flow and heat transfer characteristics of tip leakage flow. In Part III of this paper the effect of coolant injection on the flow and heat transfer characteristics of tip leakage flow is presented.


Author(s):  
Andrew A. McCarter ◽  
Xinwen Xiao ◽  
Budugar Lakshminarayana

A comprehensive experimental investigation was undertaken to explore the flow field in the tip clearance region of a turbine rotor to understand the physics of tip leakage flow. Specifically the paper looks at its origin, nature, development, interaction with the secondary flow, and its effects on performance. The experimental study was based on data obtained using a rotating five-hole probe, laser doppler velocimeter, high-response pressure probes on the casing, and static pressure taps on the rotor blade surfaces. The first part of the paper deals with the pressure field and losses. Part II presents and interprets the vorticity, velocity, and turbulence fields at several axial locations. The data provided here indicates that the tip leakage vortex originates in the last half chord. The leakage vortex is confined close to the suction surface corner near the blade tip by the relative motion of the blade and the casing, and by the secondary flow in the tip region. The tip leakage flow clings to the blade suction surface until midchord then lifts off of the suction surface to form a vortex in the last 20% of the blade chord. The relative motion between blades and casing leads to the development of a scraping vortex which, along with the secondary flow, reduces the propagation of the tip leakage flow into the mainflow. The rotational effects and corriolis forces modify the turbulence structure in the tip leakage flow and secondary flow as compared to cascades.


2000 ◽  
Vol 123 (2) ◽  
pp. 305-313 ◽  
Author(s):  
Andrew A. McCarter ◽  
Xinwen Xiao ◽  
Budugur Lakshminarayana

A comprehensive experimental investigation was undertaken to explore the flow field in the tip clearance region of a turbine rotor to understand the physics of tip leakage flow. Specifically the paper looks at its origin, nature, development, interaction with the secondary flow, and its effects on performance. The experimental study was based on data obtained using a rotating five-hole probe, Laser Doppler Velocimeter, high-response pressure probes on the casing, and static pressure taps on the rotor blade surfaces. The first part of the paper deals with the pressure field and losses. Part II presents and interprets the vorticity, velocity, and turbulence fields at several axial locations. The data provided here indicates that the tip leakage vortex originates in the last half chord. The leakage vortex is confined close to the suction surface corner near the blade tip by the relative motion of the blade and the casing, and by the secondary flow in the tip region. The tip leakage flow clings to the blade suction surface until midchord then lifts off of the suction surface to form a vortex in the last 20 percent of the blade chord. The relative motion between blades and casing leads to the development of a scraping vortex that, along with the secondary flow, reduces the propagation of the tip leakage flow into the mainflow. The rotational effects and coriolis forces modify the turbulence structure in the tip leakage flow and secondary flow as compared to cascades.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document