leakage flow
Recently Published Documents


TOTAL DOCUMENTS

1234
(FIVE YEARS 275)

H-INDEX

31
(FIVE YEARS 7)

Author(s):  
Hao Xu ◽  
Bin Meng ◽  
Chenhang Zhu ◽  
Sheng Li ◽  
Jian Ruan

The leakage of the pilot stage of the 2D valve mainly depends on the size of its initial opening. According to the Routh criterion, the pilot stage of the two-dimensional magnetically levitated servo-proportional valve (2D-MSP valve) needs to be designed to have certain positive values to increase the damping ratio to improve valve stability, which leads to the leakage flow representing a non-negligible power loss. In order to reduce leakage flow and achieve goal of energy saving, this paper presents a novel resonance stability criterion by considering nonlinear characteristics of the fluid dynamic system. First, the 2D-MSP valve is regarded as a three-way valve-controlled differential cylinder system. Based on the frequency response of the resonance state, the energy conservation method is used to solve the flow “backfilling” area, the motion equation of the cylinder piston (valve spool displacement) and the pressure waveform of the sensing chamber under different opening and pressure amplitude ratio. Then, the analytical expression of the resonance peak amplitude is obtained and the resonance stability criterion is deduced. The result is compared with the Routh stability criterion, which illustrates that the positive openings of the pilot stage can be reduced to one-third of the original value. The prototype valve is then designed and manufactured based on the resonance stability criterion. The dynamic and static characteristics under different system pressures are measured. Experimental results show that the prototype valve is an over-damped system without any overshoot, which has excellent working stability, and its static and dynamic performance can meet the demands of the industry servo-proportional control system. The research work validates the effectiveness of the proposed resonance stability criterion.


Author(s):  
Jun Xiong ◽  
Yangli Zhu ◽  
Xing Wang ◽  
Haisheng Chen ◽  
Junfeng Wang

Flow field of shroud leakage flow for a single-stage axial turbine has been investigated in this article. The spiral groove seal (SGS) is adopted for shrouded rotor blade to reduce tip leakage and improve turbine aerodynamic performance. A series of three-dimensional (3D) computational fluid dynamics (CFD) simulations are performed to investigate leakage characteristics and flow mechanism of various configurations with different angle, depth, width, and grooves number of the SGS. The original staggered labyrinth seal (LS) is also calculated for comparison. The results illustrate that small spiral groove angle can create more axial flow resistance; meanwhile, it will increase grooves number existing in the axial direction. Groove depth and tooth width will influence the number, shape, and strength of vortex in the groove. The leakage mass flow can be reduced by 36% and isentropic efficiency of the turbine can be increased by 0.26% when spiral groove angle, depth, and width of the SGS are 1.5°, 1.8 mm, and 0.8 mm, respectively. Overall, the optimal SGS can influence vortex generation and enhance energy dissipation in shroud cavity to reduce the leakage and suppress mixing loss of leakage flow with the main flow to some extent. It can be attributed to the combination of throttling effect and pumping effect of the SGS that realize leakage reduction and efficiency improvement. As a result, the SGS can effectively improve tip leakage flow of shrouded blade in axial turbine.


Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Hejian Wang

To deeply understand the hub leakage flow and its influence on the aerodynamic performance and flow behaviors of a small-scale transonic axial compressor, variations of the performance and the flow field of the compressor with different hub clearance sizes and clearance shapes were numerically analyzed. The results indicate that the hub clearance size has remarkable impacts on the overall performance of the compressor. With the increase of the hub clearance, the intensity of the hub leakage flow increases, resulting in more intense flow blockage near the stator hub, which reduces the compressor efficiency. However, the flow field near the blade mid-span is modified due to the more convergent flow as the reduced effective flow area caused by the passage blockage, and the flow separation range is narrowed, thus the flow stability of the compressor is enhanced. On this basis, two kinds of non-uniform clearance cases of expanding clearance and shrinking clearance with the same circumferential leakage area as the design clearance were investigated. The occurrence position of the double leakage flow which is closely connected with the flow loss and blockage is shifted backward by the expanding clearance, the flow capacity near the stator hub is enhanced, and the unsteady fluctuation intensity of the flow field is attenuated but fluctuation frequency remains. Similarly, the modification of the stator blade root flow field may result in the reduction of stall margin. The effect of the shrinking clearance on compressor performance is opposite to that of the expanding clearance, which reduces the peak efficiency and delays the stall inception.


Author(s):  
Ding Nan ◽  
Toru Shigemitsu ◽  
Tomofumi Ikebuchi ◽  
Takeru Ishiguro ◽  
Takuji Hosotani

Renewable energy is strongly recommended to replace the traditional fossil fuels to solve the severe environmental pollution. However, small hydro-turbine performs lower efficiency, and it is also easy to be blocked and impacted. Therefore, the contra-rotating rotors are adopted to overcome the disadvantages of small hydro-turbine. The performance and internal flow condition of contra-rotating small hydro-turbine have been clarified. In this paper, a new transparent casing is manufactured, and pressure fluctuation experiments are conducted. The pressure fluctuation experiments are to clarify the pressure fluctuation during the running of contra-rotating small hydro-turbine. Then the hydraulic stability of contra-rotating small hydro-turbine can be further investigated. According to the experiment results, for the new model, most of the amplitudes of pressure fluctuation are decreased. The maximum decreasing percentage of peak-to-peak value is 74.22%, and it is appeared on the point of Pr3. On frequency domain, the dominant frequencies of pressure fluctuation are rotation frequency and blade passing frequency. The investigation to tip leakage flow of contra-rotating small hydro-turbine is conducted based on the pressure fluctuation experiment and numerical simulation. The tip leakage vortex is identified by Q-criterion. The pressure distributions in tip clearance area show that the tip leakage vortex of new model is suppressed, and this helps to reduce the amplitude of pressure fluctuation in tip clearance area.


2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe

Abstract In the present research work, effect of airfoil vortex generator on performance and stability of transonic compressor stage is investigated through CFD simulations. In turbomachines vortex generators are used to energize boundary and generated vortex is made to interact with tip leakage flow and secondary flow vortices formed in rotor and stator blade passage. In the present numerical investigation symmetrical airfoil vortex generator is placed on rotor casing surface close to leading edge, anticipating that vortex generated will be able to disturb tip leakage flow and its interaction with rotor passage core flow. Six different vortex generator configuration are investigated by varying distance between vortex generator trailing edge and rotor leading edge. Particular vortex generator configuration shows maximum improvement of stall margin and operating range by 5.5% and 76.75% respectively. Presence of vortex generator alters flow blockage by modifying flow field in rotor tip region and hence contributes to enhancement of stall margin. As a negative effect, interaction of vortex generator vortices and casing causes surface friction and high entropy generation. As a result compressor stage pressure ratio and efficiency decreases.


2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe ◽  
Mohammed Afzal

Abstract In a transonic compressor rotor, tip leakage flow interacts with passage shock, casing boundary layer and secondary flow. This leads to increase in total pressure loss and reduction of compressor stability margin. Casing treatment is one of the passive endwall geometry modification technique to control tip leakage flow interaction. In the present investigation effect of rotor tip casing treatment is investigated on performance and stability of a NASA 37 transonic compressor stage. Existing literature reveals, that endwall casing treatment slots i.e., porous casing treatment, axial slots axially skewed slots, circumferential grooves, recirculating casing treatment etc. are able to improve compressor stability margin with penalty on stage efficiency. Turbomachinery engineers and scientists are still focusing their research work to identify an endwall casing treatment configuration with improves both compressor stall margin as well as stage efficiency. Hence in the current work, as an innovative idea, effect of casing treatment slot along rotor tip mean camber line is investigated on NASA 37 compressor stage. Casing treatment slot with rectangular cross-section was created along the rotor tip mean camber line. Four different casing treatment configurations were created by changing number of slots on rotor casing surface. In all four configurations casing treatment slot width and height remains same. Flow simulation of NASA 37 compressor stage was performed with all these four casing treatment configurations. A maximum stall margin improvement of 3% was achieved with a particular slot configuration, but without any increase in compressor stage efficiency.


Sign in / Sign up

Export Citation Format

Share Document