Transfer of Heat in Rotating Systems

Author(s):  
A. D. Gosman ◽  
M. L. Koosinlin ◽  
F. C. Lockwood ◽  
D. B. Spalding

A calculation procedure has been developed for predicting fluid-flow and heat-transfer phenomena in axisymmetrical, rotating, turbulent, steady flows, with special reference to those mainly confined within cavities. The procedure has been used for predicting boundary-layer flow between a rotating disk and a stationary one, and flow and heat transfer in a shrouded-disk system. Agreement with experimental measurements is satisfactory.

2013 ◽  
Vol 664 ◽  
pp. 859-865
Author(s):  
I Chung Liu ◽  
Hung Hsun Wang ◽  
Chia Nan Liu

The study of boundary layer flow and heat transfer near a rotating disk with nanofluids is investigated numerically. Three types of nanoparticles, namely, silver Ag, copper Cu and alumina Al2O3with water as the base fluid are considered. The results show that the momentum boundary layer thicknesses shortens as the nanoparticle volume fraction increases, whereas thermal boundary layer thickness elongates for increasing ϕ. It is found that the reduced skin-friction coefficients and heat transfer rateat the rotating surface increase linearly with nanoparticle volume fractionϕ. The surface heat transfer rate for Cu-water nanofluid is higher than those of the otherswhen ϕ>0.02, even though the nanoparticle Ag has higher thermal conductivity than that of copper Cu.


Sign in / Sign up

Export Citation Format

Share Document