scholarly journals Small Gas Turbine With Large Parabolic Dish Collectors

Author(s):  
K. Bammert ◽  
A. Sutsch ◽  
M. Simon ◽  
A. Mobarak

An alternative solution for solar energy conversion to the heliostat-tower and solar farm (parabolic trough) concept is presented in the form of large parabolic dish collectors using small high temperature gas turbines for producing electricity from solar thermal energy. A cost and efficiency comparison for the different solar thermal power plants has shown that the large parabolic dish with gas turbine set is a superior system design especially in the net power range of 50 to 2000 kW. The important advantages of the large parabolic dish concept are discussed. For the important components such as the gas turbo converter, the receiver and the parabolic dish collector, design proposals for economic solutions are presented. An advanced layout for a 250-kW gas turbo converter with recuperator is presented in detail.

Author(s):  
Stephan Heide ◽  
Christian Felsmann ◽  
Uwe Gampe ◽  
Sven Boje ◽  
Bernd Gericke ◽  
...  

Existing solar thermal power plants are based on steam turbine cycles. While their process temperature is limited, solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature. Therefore there is potential to improve the efficiency of future solar thermal power plants. Solar based heat input to substitute fuel requires specific GT features. Currently the portfolio of available GTs with these features is restricted. Only small capacity research plants are in service or in planning. Process layout and technology studies for high solar share GT systems have been carried out and have already been reported by the authors. While these investigations are based on a commercial 10MW class GT, this paper addresses the parameterization of high solar share GT systems and is not restricted to any type of commercial GT. Three configurations of solar hybrid GT cycles are analyzed. Besides recuperated and simple GT with bottoming Organic Rankine Cycle (ORC), a conventional combined cycle is considered. The study addresses the GT parameterization. Therefore parametric process models are used for simulation. Maximum electrical efficiency and associated optimum compressor pressure ratio πC are derived at design conditions. The pressure losses of the additional solar components of solar hybrid GTs have a different adversely effect on the investigated systems. Further aspects like high ambient temperature, availability of water and influence of compressor pressure level on component design are discussed as well. The present study is part of the R&D project Hybrid High Solar Share Gas Turbine Systems (HYGATE) which is funded by the German Ministry for the Environment, Nature and Nuclear Safety and the Ministry of Economics and Technology.


Energy ◽  
2017 ◽  
Vol 138 ◽  
pp. 1148-1156 ◽  
Author(s):  
Germán A. Salazar ◽  
Naum Fraidenraich ◽  
Carlos Antonio Alves de Oliveira ◽  
Olga de Castro Vilela ◽  
Marcos Hongn ◽  
...  

1981 ◽  
Vol 5 (6) ◽  
pp. 381-386 ◽  
Author(s):  
R. Manvi ◽  
T. Fujita ◽  
B.C. Gajanana ◽  
C. J. Marcus

Sign in / Sign up

Export Citation Format

Share Document