scholarly journals Influence of Endwall Flow on Airfoil Suction Surface Mid-Height Boundary Layer Development in a Turbine Cascade

1982 ◽  
Author(s):  
O. P. Sharma ◽  
R. A. Graziani

This paper presents the results of an analysis to assess the influence of cascade passage endwall flow on the airfoil suction surface mid-height boundary layer development in a turbine cascade. The effect of the endwall flow is interpreted as the generation of a cross flow and a cross flow velocity gradient in the airfoil boundary layer, which results in an extra term in the mass conservation equation. This extra term is shown to influence the boundary layer development along the mid-height of the airfoil suction surface through an increase in the boundary layer thickness and consequently an increase in the mid-height losses, and a decrease in the Reynolds shear stress, mixing length, skin friction, and Stanton number. An existing two-dimensional differential boundary layer prediction method, STAN-5, is modified to incorporate the above two effects.

1983 ◽  
Vol 105 (1) ◽  
pp. 147-155 ◽  
Author(s):  
O. P. Sharma ◽  
R. A. Graziani

This paper presents the results of an analysis to assess the influence of cascade passage endwall flow on the airfoil suction surface midheight boundary layer development in a turbine cascade. The effect of the endwall flow is interpreted as the generation of a crossflow and a crossflow velocity gradient in the airfoil boundary layer which results in an extra term in the mass conservation equation. This extra term is shown to infuence the boundary layer development along the midheight of the airfoil suction surface through an increase in the boundary layer thickness and consequently an increase in the midheight losses, and a decrease in the Reynolds shear stress, mixing length, skin friction, and Stanton number. An existing two-dimensional differential boundary layer prediction method, STAN-5, is modified to incorporate the above two effects.


2004 ◽  
Vol 126 (4) ◽  
pp. 663-676 ◽  
Author(s):  
M. T. Schobeiri ◽  
B. O¨ztu¨rk

The paper experimentally studies the effects of periodic unsteady wake flow on boundary layer development, separation and reattachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. The experiments were carried out at a Reynolds number of 110,000 (based on suction surface length and exit velocity) with a free-stream turbulence intensity of 1.9%. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies cover the entire operating range of LP turbines. In addition to the unsteady boundary layer measurements, blade surface measurements were performed at the same Reynolds number. The surface pressure measurements were also carried out at one steady and two periodic unsteady inlet flow conditions. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations and the heights defining the separation bubble were determined by carefully analyzing and examining the pressure and the mean velocity profile data. The location of boundary layer separation was independent of the reduced frequency level. However, the extent of the separation was strongly dependent on the reduced frequency level. Once the unsteady wake started to penetrate into the separation bubble, the turbulent spot produced in the wake paths caused a reduction of the separation bubble height.


1980 ◽  
Vol 102 (4) ◽  
pp. 978-983 ◽  
Author(s):  
K. Bammert ◽  
H. Sandstede

During the operation of turbines the surfaces of the blades are roughened by corrosion, erosion and deposits. The generated roughness is usually greater than that produced by manufacture. The quality of the blade surfaces determines the losses of energy conversion in turbine cascades to a great extent. The loss coefficient can be found theoretically by a boundary layer calculation. For rough surfaces there are no boundary layer measurements along the profiles of a turbine cascade. Therefore in a cascade wind tunnel measurements of the boundary layer development were carried out. The chord length of the blades was 175 mm. The cascade represented a section through the stator blades of a 50 percent reaction gas turbine. For smooth surfaces and three different roughnesses up to 3.3 · 10−3 (equivalent sand roughness related to chord length) the boundary layers were measured. The momentum thickness is up to three times as great as that on smooth surfaces. Especially in regions with decelerated flow the effects of roughness are high. A rough surface causes a rise of the friction factor and a shift of the transition of laminar to turbulent flow. The results of the measurements are shown. Correction factors are worked out to get good agreement between measurement and calculation according to the Truckenbrodt theory.


Author(s):  
M. T. Schobeiri ◽  
B. O¨ztu¨rk

The paper experimentally studies the effects of periodic unsteady wake flow on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. The experiments were carried out at a Reynolds number of 110,000 (based on suction surface length and exit velocity) with a free-stream turbulence intensity of 1.9%. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies cover the entire operating range of LP turbines. In addition to the unsteady boundary layer measurements, blade surface measurements were performed at the same Reynolds number. The surface pressure measurements were also carried out at one steady and two periodic unsteady inlet flow conditions. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations and the heights defining the separation bubble were determined by carefully analyzing and examining the pressure and the mean velocity profile data. The location of boundary layer separation was independent of the reduced frequency level. However, the extent of the separation was strongly dependent on the reduced frequency level. Once the unsteady wake started to penetrate into the separation bubble, the turbulent spot produced in the wake paths caused a reduction of the separation bubble height.


2004 ◽  
Vol 127 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Xue Feng Zhang ◽  
Howard Hodson

An experimental investigation of the combined effects of upstream unsteady wakes and surface trips on the boundary layer development on an ultra-high-lift low-pressure turbine blade, known as T106C, is described. Due to the large adverse pressure gradient, the incoming wakes are not strong enough to periodically suppress the large separation bubble on the smooth suction surface of the T106C blade. Therefore, the profile loss is not reduced as much as might be possible. The first part of this paper concerns the parametric study of the effect of surface trips on the profile losses to optimize the surface trip parameters. The parametric study included the effects of size, type, and location of the surface trips under unsteady flow conditions. The surface trips were straight cylindrical wires, straight rectangular steps, wavy rectangular steps, or wavy cylindrical wires. The second part studies the boundary layer development on the suction surface of the T106C linear cascade blade with and without the recommended surface trips to investigate the loss reduction mechanism. It is found that the selected surface trip does not induce transition immediately, but hastens the transition process in the separated shear layer underneath the wakes and between them. In this way, the combined effects of the surface trip and unsteady wakes further reduce the profile losses. This passive flow control method can be used over a relatively wide range of Reynolds numbers.


Author(s):  
W. J. Solomon

Multiple-element surface hot-film instrumentation has been used to investigate boundary layer development in the 2 stage Low Speed Research Turbine (LSRT). Measurements from instrumentation located along the suction surface of the second stage nozzle at mid-span are presented. These results contrast the unsteady, wake-induced boundary layer transition behaviour for various turbine configurations. The boundary layer development on two new turbine blading configurations with identical design vector diagrams but substantially different loading levels are compared with a previously published result. For the conventional loading (Zweifel coefficient) designs, the boundary layer transition occurred without laminar separation. At reduced solidity, wake-induced transition started upstream of a laminar separation line and an intermittent separation bubble developed between the wake-influenced areas. A turbulence grid was installed upstream of the LSRT turbine inlet to increase the turbulence level from about 1% for clean-inlet to about 5% with the grid. The effect of turbulence on the transition onset location was smaller for the reduced solidity design than the baseline. At the high turbulence level, the amplitude of the streamwise fluctuation of the wake-induced transition onset point was reduced considerably. By clocking the first stage nozzle row relative to the second, the alignment of the wake-street from the first stage nozzle with the suction surface of the second stage nozzle was varied. At particular wake clocking alignments, the periodicity of wake induced transition was almost completely eliminated.


1997 ◽  
Vol 119 (1) ◽  
pp. 114-127 ◽  
Author(s):  
D. E. Halstead ◽  
D. C. Wisler ◽  
T. H. Okiishi ◽  
G. J. Walker ◽  
H. P. Hodson ◽  
...  

Comprehensive experiments and computational analyses were conducted to understand boundary layer development on airfoil surfaces in multistage, axial-flow compressors and LP turbines. The tests were run over a broad range of Reynolds numbers and loading levels in large, low-speed research facilities which simulate the relevant aerodynamic features of modern engine components. Measurements of boundary layer characteristics were obtained by using arrays of densely packed, hot-film gauges mounted on airfoil surfaces and by making boundary layer surveys with hot wire probes. Computational predictions were made using both steady flow codes and an unsteady flow code. This is the first time that time-resolved boundary layer measurements and detailed comparisons of measured data with predictions of boundary layer codes have been reported for multistage compressor and turbine blading. Part 1 of this paper summarizes all of our experimental findings by using sketches to show how boundary layers develop on compressor and turbine blading. Parts 2 and 3 present the detailed experimental results for the compressor and turbine, respectively. Part 4 presents computational analyses and discusses comparisons with experimental data. Readers not interested in experimental detail can go directly from Part 1 to Part 4. For both compressor and turbine blading, the experimental results show large extents of laminar and transitional flow on the suction surface of embedded stages, with the boundary layer generally developing along two distinct but coupled paths. One path lies approximately under the wake trajectory while the other lies between wakes. Along both paths the boundary layer clearly goes from laminar to transitional to turbulent. The wake path and the non-wake path are coupled by a calmed region, which, being generated by turbulent spots produced in the wake path, is effective in suppressing flow separation and delaying transition in the non-wake path. The location and strength of the various regions within the paths, such as wake-induced transitional and turbulent strips, vary with Reynolds number, loading level, and turbulence intensity. On the pressure surface, transition takes place near the leading edge for the blading tested. For both surfaces, bypass transition and separated-flow transition were observed. Classical Tollmien–Schlichting transition did not play a significant role. Comparisons of embedded and first-stage results were also made to assess the relevance of applying single-stage and cascade studies to the multistage environment. Although doing well under certain conditions, the codes in general could not adequately predict the onset and extent of transition in regions affected by calming. However, assessments are made to guide designers in using current predictive schemes to compute boundary layer features and obtain reasonable loss predictions.


Author(s):  
David E. Halstead ◽  
David C. Wisler ◽  
Theodore H. Okiishi ◽  
Gregory J. Walker ◽  
Howard P. Hodson ◽  
...  

Comprehensive experiments and computational analyses were conducted to understand boundary layer development on airfoil surfaces in multistage, axial-flow compressors and LP turbines. The tests were run over a broad range of Reynolds numbers and loading levels in large, low-speed research facilities which simulate the relevant aerodynamic features of modern engine components. Measurements of boundary layer characteristics were obtained by using arrays of densely packed, hot-film gauges mounted on airfoil surfaces and by making boundary layer surveys with hot wire probes. Computational predictions were made using both steady flow codes and an unsteady flow code. This is the first time that time-resolved boundary layer measurements and detailed comparisons of measured data with predictions of boundary layer codes have been reported for multistage compressor and turbine blading. Part 1 of this paper draws a composite picture of boundary layer development in turbomachinery based upon a synthesis of all of our experimental findings for the compressor and turbine. Parts 2 and 3 present the experimental results for the compressor and turbine, respectively. Part 4 presents computational analyses and discusses comparisons with experimental data. For both compressor and turbine blading, the experimental results show large extents of laminar and transitional flow on the suction surface of embedded stages, with the boundary layer generally developing along two distinct but coupled paths. One path lies approximately under the wake trajectory while the other lies between wakes. Along both paths the boundary layer clearly goes from laminar to transitional to turbulent. The wake path and the non-wake path are coupled by a calmed region which, being generated by turbulent spots produced in the wake path, is effective in suppressing flow separation and delaying transition in the non-wake path. The location and strength of the various regions within the paths, such as wake-induced transitional and turbulent strips, vary with Reynolds number, loading level and turbulence intensity. On the pressure surface, transition takes place near the leading edge for the blading tested. For both surfaces, bypass transition and separated-flow transition were observed. Classical Tollmien-Schlichting transition did not play a significant role. Comparisons of embedded and first-stage results were also made to assess the relevance of applying single-stage and cascade studies to the multistage environment. Although doing well under certain conditions, the codes in general could not adequately predict the onset and extent of transition in regions affected by calming. However, assessments are made to guide designers in using current predictive schemes to compute boundary layer features and obtain reasonable loss predictions.


Sign in / Sign up

Export Citation Format

Share Document