Materials Issues for PFBC Expander Turbines

Author(s):  
John Stringer

Several large pressurized fluidized bed combustion systems have recently been installed. In addition, second-generation concepts are being developed, in which the turbine inlet temperature will be appreciably higher. The durability of the gas turbine expander remains a question for the technology, and experience is limited. The available information is presented, and the potential problems of erosion, corrosion, and erosion/corrosion are discussed.

1994 ◽  
Vol 116 (2) ◽  
pp. 345-351 ◽  
Author(s):  
A. Robertson ◽  
D. Bonk

In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second-generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal is devolatilized/carbonized before it is injected into the PFB combustor bed, and the low-Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149°C (2100°F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871°C (1600°F), permitting sulfur capture by time-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.


Author(s):  
Archie Robertson ◽  
Donald Bonk

In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second-generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal is devolatilized/carbonized before it is injected into the PFB combustor bed, and the low-Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149°C (2100°F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871°C (1600°F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.


Author(s):  
R. V. Garland ◽  
P. W. Pillsbury ◽  
T. E. Dowdy

Second Generation Pressurized Fluidized Bed Combustion Combined Cycles utilize topping combustion to raise the combustion turbine inlet temperature to the state of the art. Principally for this reason, cycle efficiency is improved over first generation PFB systems. Topping combustor design requirements differ from conventional gas turbine combustors since hot, vitiated air from the PFB is used for both cooling and combustion. In addition, the topping combustor fuel, a hot, low-heating value gas produced from coal pyrolysis, contains ammonia. This NOx-forming constituent adds to the combustor’s unique design challenges. The candidate combustor is the multi-annular swirl burner (MASB) based on the design described by J.M. Beér. This concept embodies rich-burn, quick quench, and lean-burn zones formed aerodynamically. The initial test sponsored by the Department of Energy, Morgantown, West Virginia, has been completed and the results of that test are presented.


Sign in / Sign up

Export Citation Format

Share Document