scholarly journals Fracture Mechanics Approach to Creep Crack Growth in Welded IN738LC Gas Turbine Blades

Author(s):  
Wan-P’ng Foo ◽  
Rafael Castillo

Microcracks caused by hot cracking or strain age cracking mechanisms are very likely to be discovered in the weld repair zone of precision cast IN738LC gas turbine blades. The possibility of crack propagation under the operating conditions of the gas turbine thereby becomes a crucial issue for gas turbine designers. The creep crack growth rate in air of the hipped and fully heat treated IN738LC was measured at the service temperature experienced by the first stage turbine blade tip. The corresponding growth behaviour was also studied. The creep crack growth rate, da/dt, versus crack tip stress intensity factor, K1, a relation which exhibits the typical primary, secondary and tertiary behaviour, supports the applicability of K1 as an appropriate correlating parameter for the creep crack growth of this Ni-based superalloy under the loading conditions used in this study. Microstructural examination illustrated that the creep crack growth of IN738LC principally takes place by the nucleation, growth, coalescence and link-up of grain boundary microvoids and microcracks. An excellent approximation of the stress intensity factor under service loading conditions in the vicinity of the crack tip was obtained by using the Westinghouse WECAN finite element analysis. It is shown that the crack tip stress intensity factor under normal loading conditions will not be able to drive the transverse through-the-wall-thickness blade tip crack in this study.

1992 ◽  
Vol 114 (2) ◽  
pp. 275-283 ◽  
Author(s):  
W. P. Foo ◽  
R. Castillo

Microcracks caused by hot cracking or strain age cracking mechanisms are very likely to be discovered in the weld repair zone of precision-cast IN738LC gas turbine blades. The possibility of crack propagation under the operating conditions of the gas turbine thereby becomes a crucial issue for gas turbine designers. The creep crack growth rate in air of the hipped and fully heat-treated IN738LC was measured at the service temperature experienced by the first-stage turbine blade tip. The corresponding growth behavior was also studied. The creep crack growth rate, da/dt, versus crack tip stress intensity factor, KI, a relation that exhibits the typical primary, secondary, and tertiary behavior, supports the applicability of KI, as an appropriate correlating parameter for the creep crack growth of this Ni-based superalloy under the loading conditions used in this study. Microstructural examination illustrated that the creep crack growth of IN738LC principally takes place by the nucleation, growth, coalescence, and link-up of grain boundary microvoids and microcracks. An excellent approximation of the stress intensity factor under service loading conditions in the vicinity of the crack tip was obtained by using the Westinghouse WECAN finite element analysis. It is shown that the crack tip stress intensity factor under normal loading conditions will not be able to drive the transverse through-the-wall-thickness blade tip crack in this study.


CORROSION ◽  
10.5006/3711 ◽  
2021 ◽  
Author(s):  
Hamid Niazi ◽  
Greg Nelson ◽  
Lyndon Lamborn ◽  
Reg Eadie ◽  
Weixing Chen ◽  
...  

Pipelines undergo sequential stages before failure caused by High pH Stress Corrosion Cracking (HpHSCC). These sequential stages are incubation stage, intergranular crack initiation (Stage 1a), crack evolution to provide the condition for mechanically driven crack growth (Stage 1b), sustainable mechanically driven crack propagation (Stage 2), and rapid crack propagation to failure (Stage 3). The crack propagation mechanisms in Stage 1b are composed of the nucleation and growth of secondary cracks on the free surface and crack coalescence of secondary cracks with one another and the primary crack. These mechanisms continue until the stress intensity factor (<i>K</i>) at the crack tip reaches a critical value, known as <i>K</i><sub>ISCC</sub>. This investigation took a novel approach to study Stage 1b in using pre-cracked Compact Tension (CT) specimens. Using pre-cracked specimens and maintaining <i>K</i> at less than <i>K</i><sub>ISCC</sub> provided an opportunity to study crack initiation on the surface of the specimen under plane stress conditions in the presence of a pre-existing crack. In the present work, the effects of cyclic loading characteristics on crack growth behavior during Stage 1b were studied. It was observed that the pre-existing cracks during Stage 1b led to the initiation of secondary cracks. The initiation of the secondary cracks at the crack tip depended on loading characteristics, <i>i.e</i>., the amplitude and frequency of load fluctuations. The secondary cracks at the crack tip can be classified into four categories based on their positions with respect to the primary crack. A high density of intergranular cracks formed in the cyclic plastic zone generated by low R-ratio cycles. The higher the frequency of the low <i>R</i>-ratio cycles, the higher the density of the intergranular cracks forming in the cyclic plastic zone. The crack growth rate increased with an increase in either the amplitude or the frequency of the load fluctuations. The minimum and maximum crack growth rates were 8×10<sup>-9</sup> mm/s and 4.2×10<sup>-7</sup> mm/s, respectively, with <i>R</i>-ratio varying between 0.2 and 0.9, frequency varying between 10<sup>-4</sup> Hz and 5×10<sup>-2</sup> Hz, and at a fixed stress intensity factor of 15 MPa.m<sup>0.5</sup>. It was found that avoiding rapid and large load fluctuations slowed down crack geometry evolution and delayed onset of Stage 2. The implication of these results for pipeline operators is that reducing internal pressure fluctuations by reducing the frequency and/or amplitude of the fluctuations can expand Stage 1 and increase the reliable lifetime of operating pipelines.


2014 ◽  
Vol 80 (815) ◽  
pp. SMM0194-SMM0194 ◽  
Author(s):  
Sho KAWATSU ◽  
Tetsuo YASUOKA ◽  
Yoshihiro MIZUTANI ◽  
Akira TODOROKI ◽  
Yoshiro SUZUKI

Author(s):  
Kanwardeep S. Bhachu ◽  
Santosh B. Narasimhachary ◽  
Sachin R. Shinde ◽  
Phillip W. Gravett

Fracture mechanics analysis is essential for demonstrating structural integrity of gas turbine components. Usually, analyses based on simpler 2D stress intensity solutions provide reasonable approximations of crack growth. However, in some cases, simpler 2D solutions are too-conservative and does not provide realistic crack growth predictions; often due to its inability to account for actual 3D geometry, and complex thermal-mechanical stress fields. In such cases, 3D fracture mechanics analysis provides extra fidelity to crack growth predictions due to increased accuracy of the stress intensity factor calculations. Improved fidelity often leads to benefits for gas turbine components by reducing design margins, improving engine efficiency, and decreasing life cycle costs. In this paper, the application of 3D fracture mechanics analysis on a gas turbine blade for predicting crack arrest is presented. A comparison of stress intensity factor values from 3D and 2D analysis is also shown. The 3D crack growth analysis was performed by using FRANC3D in conjunction with ANSYS.


1986 ◽  
Vol 108 (1) ◽  
pp. 37-43 ◽  
Author(s):  
J. A. Kapp ◽  
D. Duquette ◽  
M. H. Kamdar

Crack growth rate measurements have been made in three mercury embrittled aluminum alloys each under three loading conditions. The alloys were 1100-0, 6061-T651, and 7075-T651. The loading conditions were fixed displacement static loading, fixed load static loading, and fatigue loading at two frequencies. The results showed that mercury cracking of aluminum was not unlike other types of embrittlement (i.e. hydrogen cracking of steels). Under fixed load static conditions no crack growth was observed below a threshold stress intensity factor (KILME). At K levels greater than KILME cracks grew on the order of cm/s, while under fixed displacement loading, the crack growth rate was strongly dependent upon the strength of the alloy tested. This was attributed to crack closure. In the fatigue tests, no enhanced crack growth occurred until a critical range of stress intensity factor (ΔKth) was achieved. The ΔKth agreed well with the KILME obtained from the static tests, but the magnitude of the fatigue growth rate was substantially less than was expected based on the static loading results. Observations of the fracture surfaces in the SEM suggested a brittle intergranular fracture mode for the 6061-T651 and the 7075-T651 alloys under all loading conditions. The fractographic features of the 1100-0 alloy under fixed load and fatigue loading conditions were also brittle intergranular. Under fixed displacement loading the cracks grew via a ductile intergranular mode.


Author(s):  
M. R. Fourozan ◽  
M. Olfatnia ◽  
S. J. Golestaneh

In this paper, a quantitative study on stress corrosion crack growth in large diameter gas pipelines is presented. Finite element method is applied for determining stress intensity factor at the crack tip. First a small semi-elliptical axial surface crack is assumed. Then internal gas pressure and residual stress, induced from welding process, are considered. Applied forces and crack growth rate are calculated as a function of stress intensity factor based on an empirical equation. Crack front shape is determined by calculating stress intensity factor distributions along the crack tip. As a result, the effect of residual stress on stress intensity factor and therefore crack growth is determined. In addition, minimum crack size that activates the stress corrosion cracking mechanism is determined. It is shown that the applied method could be used to estimate the reliable life of pipeline and the suitable time for inspection of the pipeline’s surface.


2004 ◽  
Vol 854 ◽  
Author(s):  
I. Chasiotis ◽  
S.W. Cho ◽  
K. Jonnalagadda

ABSTRACTDirect measurements of Mode-I critical stress intensity factor and crack tip displacements were conducted in the vicinity of atomically sharp edge cracks in polycrystalline silicon MEMS using our in situ Atomic Force Microscopy (AFM)/Digital Image Correlation (DIC) method. The average Mode-I critical stress intensity factor for various fabrication runs was 1.00 ± 0.1 MPa√m. The experimental crack tip displacement fields were in very good agreement with linear elastic fracture mechanics solutions. By means of an AFM, direct experimental evidence of incremental crack growth in polycrystalline silicon was obtained for the first time via spatially resolved crack growth measurements. The incremental crack growth in brittle polysilicon is attributed to its locally anisotropic polycrystalline structure which also results in different local and macroscopic (apparent) stress intensity factors.


Sign in / Sign up

Export Citation Format

Share Document