Volume 7A: Structures and Dynamics
Latest Publications


TOTAL DOCUMENTS

69
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850923

Author(s):  
Lei Han ◽  
Cao Chen ◽  
Xiaoyong Zhang ◽  
Xiaojun Yan

The combined high and low cycle fatigue (CCF) test on full scale turbine blade in the laboratory is an important method to evaluate the life. In fact, the low cycle fatigue which is usually caused by the centrifugal force can be confirmed easily. While, the high cycle fatigue which is usually caused by the vibration and aerodynamic force is often hard to determine. So the previous scholar has proposed the contrast method to determine the high cycle load in the field. This method utilizes the new and used blades to determine the high cycle within certain limits. While it can’t be applied effectively in the whole life range with the low cycle-high cycle-ultra high cycle fatigue theory raised. So this paper put forward the modified contrast method to realize the optimization. Firstly, the CCF tests are carried out on the turbine blade systematically. Then, the CCF damage properties, including the crack propagation, the fracture morphology and the dynamic characteristic are analyzed. Lastly, the new modified contrast method is proposed with the new coordinate axes, new fitting criterions and amend method. Through comparisons we conclude that: the new method is slightly complicated, but the evaluate precision has significantly increased. So it could be used to deal with data for CCF tests on full scale turbine blade in the future.


Author(s):  
Kai Kadau ◽  
Phillip W. Gravett ◽  
Christian Amann

We developed and successfully applied a direct simulation Monte-Carlo scheme to quantify the risk of fracture for heavy duty rotors commonly used in the energy sector. The developed Probabilistic Fracture Mechanics high-performance computing methodology and code ProbFM routinely assesses relevant modes of operation for a component by performing billions of individual fracture mechanics simulations. The methodology can be used for new design and life-optimization of components, as well as for the risk of failure quantification of in service rotors and their re-qualifications in conjunction with non-destructive examination techniques, such as ultrasonic testing. The developed probabilistic scheme integrates material data, ultra-sonic testing information, duty-cycle data, and finite element analysis in order to determine the risk of failure. The methodology provides an integrative and robust measure of the fitness for service and allows for a save and reliable operation management of heavy duty rotating equipment.


Author(s):  
Songwang Zheng ◽  
Cao Chen ◽  
Lei Han ◽  
Xiaoyong Zhang ◽  
Xiaojun Yan

To carry out combined low and high cycle fatigue (CCF) test on turbine blades in a bench environment, it is imperative to simulate the vibration loads of turbine blades in the field. Due to the low vibration stress of turbine blades in the working state, the test time will be very long if the test vibration stress is equal to the real vibration stress in working state. Therefore, an accelerated test will be used when the test life reach the target value (typically 107). During the accelerated test, each blade is tested at two or more times than the real vibration stress. That means some specimens are tested under two vibration stress levels. In this case, a reasonable data processing method becomes very important. For this reason, a data processing method for the CCF accelerated test is proposed in this paper. These test data are iterated on the basis of S-N curve. Finally, ten real turbine blades are tested in a bench environment, one of them is tested under two vibration stress levels. The test data is processed using the method proposed above to obtain the unaccelerated life data.


Author(s):  
Jiaguangyi Xiao ◽  
Yong Chen ◽  
Qichen Zhu ◽  
Jun Lee ◽  
Tingting Ma

Composite fan blade ply lay-up design, which includes ply drop-off/shuffle design and stacking sequence design, makes fan blade structures different from traditional composite structures. It gives designers more freedom to construct high-quality fan blades. However, contemporary fan blade profiles are quite complex and twisted, and fan blade structures are quite different from regular composite structures such as composite laminates and composite wings. The ply drop-off design of a fan blade, especially for a fully 3D fan blade, is still an arduous task. To meet this challenge, this paper develops a ply lay-up way with the help of a software called Fibersim. The fully 3D fan blade is cut into ply pieces in Fibersim. As a result, an initial ply sequence is created and ply shuffle could revise it. Because of the complexity of ply shuffling, the ply shuffle table developed in this paper mainly refers to the design experience gained from simple plate-like laminate structures and some criterion. Besides, the impact of different ply orientation patterns on the reliability of composite fan blade is studied through static and modal numerical analysis. The results show that this ply lay-up idea is feasible for aero engine composite fan blade. Under the calculated rotating speeds, the ply stacking sequence 4 (i.e.[−45°/0°/+45°/0°] with the outer seven groups are [−45°/0°/−45°/0°]) shows the greatest margin of safety compared with other stacking sequences. Modal analysis shows that plies with different angles could have relatively big different impacts on blades vibration characteristics. The composite fan blade ply design route this paper presents has gain its initial success and the results in this paper might be used as basic references for composite blade initial structural design.


Author(s):  
Benjamin Hanschke ◽  
Thomas Klauke ◽  
Arnold Kühhorn

For a considerable amount of time blade integrated disks (blisks) are established as a standard component of high pressure compressors (HPCs) in aero engines. Due to the steady requirement to increase the efficiency of modern HPCs, blade profiles get thinned out and aerodynamic stage loading increases. Ever since, aerofoil design has to balance structural and aerodynamic requirements. One particularity of aero engines is the possibility to ingest different kinds of debris during operation and some of those particles are hard enough to seriously damage the aerofoil. Lately, a growing number of blisk-equipped aero engines entered service and the question of foreign object damage (FOD) sensitivity relating to compressor blade high cycle fatigue (HCF) has emerged. Correct prediction of fatigue strength drop due to a FOD provides a huge chance for cost cutting in the service sector as on-wing repairs (e.g. borescope blending) are much more convenient than the replacement of whole blisks and corresponding engine strips. The aim of this paper is to identify critical FOD-areas of a modern HPC stage and to analyze the effects of stress concentrations — caused by FOD — on the fatigue strength. A process chain has been developed, that automatically creates damaged geometries, meshes the parts and analyses the fatigue strength. Amplitude frequency strength (af-strength) has been chosen as fatigue strength indicator owing to the fact, that amplitudes and frequencies of blade vibrations are commonly measured either by blade tip timing or strain gauges. Furthermore, static and dynamic stress concentrations in damaged geometries compared to the reference design were computed. A random variation of input parameters was performed, such as the radial damage position at blade leading edge and damage diameter. Based on results of the different samples, correlations of input parameters and the fatigue strength drop have been investigated. Evaluation shows a significant mode dependence of critical blade areas with a large scatter between drops in fatigue strength visible for mode to mode comparison. Keeping in mind the necessity of fast response times in the in-service sector, FOD sensitivity computations could be performed for all blade rows of the HPC — including the analysis of possible borescope blending geometries — in the design stage. Finally, the actual amplitude frequency levels (af-levels) of the modes excited during operation have to be appropriately taken into consideration. For example, a pronounced af-strength drop due to a FOD may not be critical for safe engine operations because the observed mode is excited by small af-levels during operation. Hence, the endurance ratio — a quotient of af-level and af-strength — is used as assessment criterion.


Author(s):  
Marcel Mahner ◽  
Pu Li ◽  
Andreas Lehn ◽  
Bernhard Schweizer

A detailed elasto-gasdynamic model of a preloaded three-pad air foil journal bearing is presented. Bump and top foil deflections are herein calculated with a nonlinear beamshell theory according to Reissner. The 2D pressure distribution in each bearing pad is described by the Reynolds equation for compressible fluids. With this model, the influence of the assembly preload on the static bearing hysteresis as well as on the aerodynamic bearing performance is investigated. For the purpose of model validation, the predicted hysteresis curves are compared with measured curves. The numerically predicted and the measured hysteresis curves show a good agreement. The numerical predictions exhibit that the assembly preload increases the bearing stiffness (in particular for moderate shaft displacements) and the bearing damping.


Author(s):  
Bugra Ertas ◽  
Adolfo Delgado ◽  
Jeffrey Moore

The present work advances experimental results and analytical predictions on the dynamic performance of an integral squeeze film damper (ISFD) for application in a high-speed super-critical CO2 (sCO2) expander. The test campaign focused on conducting controlled orbital motion mechanical impedance testing aimed at extracting stiffness and damping coefficients for varying end seal clearances, excitation frequencies, and vibration amplitudes. In addition to the measurement of stiffness and damping; the testing revealed the onset of cavitation for the ISFD. Results show damping behavior that is constant with vibratory velocity for each end seal clearance case until the onset of cavitation/air ingestion, while the direct stiffness measurement was shown to be linear. Measurable added inertia coefficients were also identified. The predictive model uses an isothermal finite element method to solve for dynamic pressures for an incompressible fluid using a modified Reynolds equation accounting for fluid inertia effects. The predictions revealed good correlation for experimentally measured direct damping, but resulted in grossly overpredicted inertia coefficients when compared to experiments.


Author(s):  
Tomohiko Tsukuda ◽  
Toshio Hirano ◽  
Cori Watson ◽  
Neal R. Morgan ◽  
Brian K. Weaver ◽  
...  

Full three-dimensional CFD simulations are carried out using ANSYS CFX to obtain the detailed flow field and to estimate the rotordynamic coefficients of a labyrinth seal for various inlet swirl ratios. Flow fields in the labyrinth seal with the eccentricity of the rotor are observed in detail and the detailed mechanisms that increase the destabilizing forces at high inlet swirl ratios are discussed based on the fluid governing equations associated with the flow fields. By evaluating the contributions from each term of the governing equation to cross coupled force, it is found that circumferential velocity and circumferential distribution of axial mass flow rate play key roles in generating cross coupled forces. In the case that circumferential velocity is high and decreases along the axial direction, all contributions from each term are positive cross coupled force. On the other hand, in the case that circumferential velocity is low and increases along the axial direction, one contribution is positive but the other is negative. Therefore, cross coupled force can be negative in the local chamber depending on the balance even if circumferential velocity is positive. CFD predictions of cross coupled stiffness coefficients and direct damping coefficients show better agreement with experimental results than a bulk flow model does by considering the force on the rotor in the inlet region. Cross coupled stiffness coefficients derived from the force on the rotor in the seal section agree well with those of the bulk flow model.


Author(s):  
Md Ibrahim Kittur ◽  
Krishnaraja G. Kodancha ◽  
C. R. Rajashekar

In this investigation, the variation of J-integral considering Compact Tension (CT) specimen geometry varying a/W and σ using 2D and 3D elasto-plastic Finite Element (FE) analysis have been studied. Further, the investigation has been done to examine the relationship between the J and δ for varied a/W and σ. The plane stress and plane strain elasto-plastic FE analyses have been conducted on the CT specimen with a/W = 0.45–0.65 to extract the J and Crack-tip Opening Displacement (CTOD) values for mild steel. The comparative study of the variation of dn with a/W of mild steel with earlier results of IF steel is carried out. The study clearly infers the effect of yield stress on the variation of the magnitude of dn with reference to a/W ratio. The present analysis infers that while converting the magnitude of the CTOD to J one needs to carefully evaluate the value of dn depending on the material rather than considering it to be unity. Further, the study was extended to experimental and 3D FEA wherein J-integral and CTOD were estimated using the CT specimen. Experimental results reveal that the crack length, the specimen thickness, and the loading configuration have an effect on the fracture toughness measurements. The error analysis between the results obtained by 3D FEA and experimentation were conducted and found to be within limits.


Author(s):  
K. Shalash ◽  
J. Schiffmann

Potential geometrical deviations in bump foil bearings due to manufacturing uncertainty can have significant effects on both the local stiffness and clearance, and hence, affecting the overall bearing performance. The manufacturing uncertainty of bump type foil bearings was investigated, showing large geometrical deviations, using a developed measurement tool for the formed bump foils. A reduced order foil bearing model was used in a Monte Carlo simulation studying the effect of manufacturing noise on the onset of instability, highlighting the sensitivity of the rotor-bearing system to such manufacturing deviations. It was found that 30% of the simulated cases resulted improvements in stability, the remaining cases underperformed. Attempting to increase the robustness of the bearing, two other compliant structures replacing the classical gen-II bump foils were investigated from a manufacturing perspective. The first is a modified bump type Sinusoidal foil, and the second is the Cantilever beam foil. Consequently, quasi-static load-displacement tests were executed showing deviations in local clearance and stiffness for the classical bump type compliant structure compared to the other designs. It was found that the Cantilever beam foils yield more robustness compared to the bump type foils. Finally, an analytical model for the sequential engagement of the compliant structure is presented and validated with experimental measurements for both bump type and Cantilever structures.


Sign in / Sign up

Export Citation Format

Share Document