Enabling Technologies for Nuclear Gas Turbine (GT-MHR) Power Conversion System

Author(s):  
Colin F. McDonald

Since the onset of gas-cooled reactor work, almost half a century ago, the potential for direct coupling of a nuclear heat source with a gas turbine power conversion system was recognized, however, the technologies for the realization of this were not available, and the plants operated to date have used Rankine steam turbine power conversion systems. In the early 1990s, technology transfer from the gas turbine and aerospace industries, now make possible the introduction of the gas turbine modular helium reactor (GT-MHR) for utility power generation within the next decade. In this paper the enabling technologies for the helium gas turbine power conversion system are discussed, and these include the turbomachinery, magnetic bearings, compact heat exchangers, and helium system operating experience. Utilizing proven technology, the first GT-MHR plant would operate with an efficiency of 47%, and by exploiting its full potential this could perhaps reach as high as 60% early in the next century.

Author(s):  
Colin F. McDonald

Many variants of the nuclear closed Brayton cycle (NCBC) power plant have been studied over the last five decades, the ultimate goal being the introduction of a high efficiency and environmentally acceptable plant for electrical power generation. With an indirect cycle (IDC) plant the thermal energy from a high temperature reactor (HTR) is transferred to the helium gas turbine power conversion system via an intermediate heat exchanger. Compared with previous direct cycle variants the decoupling of the prime-mover from the reactor has the following advantages, 1) configuration flexibility (eased congestion), 2) good component access, 3) non radioactive power conversion system, 4) ease of maintenance, 5) use of conventional equipment, 6) reduced development effort, and 7) eased adaptability to a fossil-fired source. In addition to being a more practical configuration, a major attribute for the IDC is that it is compatible with long-term plans for development of a high temperature nuclear heat source (NHS) currently underway in Japan. With a NHS in place a logical progression of the HTR would be to deploy a power generation version using an IDC helium gas turbine. This paper sheds new light on the nuclear gas turbine in that it is no longer at the forefront of gas cooled reactor application studies, but rather could be a beneficiary of work currently underway in Japan to develop a nuclear heat source for high temperature process heat. The performance and major features of a future NCBC plant concept are highlighted in this paper. Depending on the market forces prevailing in Asia for small nuclear plants, the NCBC with an indirect cycle helium gas turbine could be available for service around the year 2020.


Author(s):  
Ali Afrazeh ◽  
Hiwa Khaledi ◽  
Mohammad Bagher Ghofrani

A gas turbine in combination with a nuclear heat source has been subject of study for some years. This paper describes the advantages of a gas turbine combined with an inherently safe and well-proven nuclear heat source. The design of the power conversion system is based on a regenerative, non-intercooled, closed, direct Brayton cycle with high temperature gas-cooled reactor (HTGR), as heat source and helium gas as the working fluid. The plant produces electricity and hot water for district heating (DH). Variation of specific heat, enthalpy and entropy of working fluid with pressure and temperature are included in this model. Advanced blade cooling technology is used in order to allow for a high turbine inlet temperature. The paper starts with an overview of the main characteristics of the nuclear heat source, Then presents a study to determine the specifications of a closed-cycle gas turbine for the HTGR installation. Attention is given to the way such a closed-cycle gas turbine can be modeled. Subsequently the sensitivity of the efficiency to several design choices is investigated. This model is developed in Fortran.


Author(s):  
C. F. McDonald ◽  
R. G. Adams ◽  
F. R. Bell ◽  
P. Fortescue

The gas turbine high-temperature gas-cooled reactor (HTGR) power plant combines the existing design HTGR core with a closed-cycle helium gas turbine power conversion system directly in the reactor primary circuit. The high density helium working fluid results in a very compact power conversion system. While the geometries of the helium turbomachinery, heat exchangers, and internal gas flow paths differ from air breathing gas turbines because of the nature of the working fluid and the high degree of pressurization, many of the aerodynamic, heat transfer and dynamic analytical procedures used in the design are identical to conventional open-cycle industrial gas turbine practice. This paper outlines some of the preliminary design considerations for the rotating machinery, heat exchangers, and other major primary system components for an integrated type of plant embodying multiple gas turbine loops. The high potential for further improvement in plant efficiency and capacity, for both advanced dry-cooled and waste heat power cycle versions of the direct-cycle nuclear gas turbine, is also discussed.


Author(s):  
Colin F. McDonald ◽  
Ian R. Marshall ◽  
John Donaldson ◽  
Davdrin D. Kapich

The circulator is a key component in a gas-cooled nuclear power plant since it facilitates transfer of the reactor thermal energy (via the steam generator) to the electrical power conversion system. Circulator technology is well established and about 200 machines, which, in their simplest form, consist of an electrical motor driven compressor, have operated for many millions of hours worldwide in gas-cooled reactors. This paper covers the evolution of circulator design, technology and operating experience, with particular emphasis on how lessons learned over the last four decades (dominantly from the carbon dioxide cooled plants in the U.K.) are applicable to the helium cooled Modular High Temperature Gas-Cooled Reactor (MHTCR) which should see service in the U.S. at the turn of the next century. State-of-the-art technologies are covered in the areas of impeller selection, bearings, drive system, machine operation, and future trends are Identified.


Author(s):  
Michael H. Jones ◽  
L. M. (Matt) Nall

In the late 1970’s, due to increasing electric energy costs and the potential for power interruption at Solar Turbines Incorporated’s Harbor Drive manufacturing facility, management evaluated several self-generating options available at the time. With large fluctuating loads and a very limited need for thermal energy, the appropriate solution was determined to be peak shaving. In 1980, a 2.5-MW dual fuel industrial gas turbine generator set was installed. Its intended operating cycle was during on-peak billing periods, 5 days a week throughout the year. Through August 31, 1993, the system has accumulated 22,743 hours of use and 3879 starts. Its overall start reliability has been 99.9% with an availability of 98.2%. Payback on the installation was in 4.2 years. It has continued to generate savings since installation, with net savings for 1992 alone exceeding $470,000. This paper highlights the key aspects of the economic methodology justifying installation of the peak shaving system, operating procedures, maintenance practices and system modifications put in place over the life of the installation.


Author(s):  
Yasuyoshi Kato

Three systems have been proposed for advanced high temperature gas-cooled reactors (HTGRs): a supercritical carbon dioxide (S-CO2) gas turbine power conversion system; a new MicroChannel Heat Exchanger (MCHE); and a once-through-then-out (OTTO) refueling scheme with burnable poison (BP) loading. An S-CO2 gas turbine cycle attains higher cycle efficiency than a He gas turbine cycle due to reduced compression work around the critical point of CO2. Considering temperature lowering at the turbine inlet by 30°C through the intermediate heat exchange, the S-CO2 indirect cycle achieves efficiency of 53.8% at turbine inlet temperature of 820°C and turbine inlet pressure of 20 MPa. This cycle efficiency value is higher by 4.5% than that (49.3%) of a He direct cycle at turbine inlet temperature of 850°C and 7 MPa. A new MCHE has been proposed as intermediate heat exchangers between the primary cooling He loop and the secondary S-CO2 gas turbine power conversion system; and recuperators of the S-CO2 gas turbine power conversion system. This MCHE has discontinuous “S”-shape fins providing flow channels with near sine curves. Its pressure drop is one-sixth reference to the conventional MCHE with zigzag flow channel configuration while the same high heat transfer performance inherits. The pressure drop reduction is ascribed to suppression of recirculation flows and eddies that appears around bend corners of zigzag flow channels in the conventional MCHE. An optimal BP loading in an OTTO refueling scheme eliminates the drawback of its excessively high axial power peaking factor, reducing the power peaking factor from 4.44 to about 1.7; and inheriting advantages over the multi-pass scheme because of the lack of fuel handling and integrity checking systems; and reloading. Because of the power peaking factor reduction, the maximum fuel temperatures are lower than the maximum permissible values of 1250°C for normal operation and 1600°C during a depressurization accident.


2003 ◽  
Vol 2 (3) ◽  
pp. 319-331
Author(s):  
Shinichi KOSUGIYAMA ◽  
Takakazu TAKIZUKA ◽  
Kazuhiko KUNITOMI ◽  
Xing YAN ◽  
Shoji KATANISHI ◽  
...  

2002 ◽  
Vol 1 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Shoji TAKADA ◽  
Takakazu TAKIZUKA ◽  
Kazuhiko KUNITOMI ◽  
Xing YAN ◽  
Shoji KATANISHI ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 329-333 ◽  
Author(s):  
G. A. K. Crommelin

Over the last few years a number of papers have discussed the progress on studies and thoughts on small-scale nuclear power, especially nuclear power conversion systems aiming at the nonutility markets, such as the stand-alone heat generation, combined heat and power production, stand-alone electricity conversion, and ship propulsion. The design of these installations must fully comply with the philosophies as are common in these markets, where the expression “the engine is a means to an end” applies. So design to cost, design to be operated by non professional energy producers, to be managed by a pool-management system, maintained, repaired and overhauled by replacement, etc. The paper will discuss such a design. So far all papers mentioned have discussed the gas turbine directly coupled to the heat source. However, the helium turbine is considered quite a challenge for the gas turbine industry, so alternatives had to be found. At the moment the possibilities of gas turbines with an indirect heat source (to burn refuse, wood, refinery waste, etc.) are getting much more attention. The paper therefore will discuss how an inherently safe, well proven, nuclear heat source can be coupled by an intermediate heat exchanger to a recuperative, existing but adapted gas turbine.


Sign in / Sign up

Export Citation Format

Share Document