Component Design Considerations for Gas Turbine HTGR Power Plant

Author(s):  
C. F. McDonald ◽  
R. G. Adams ◽  
F. R. Bell ◽  
P. Fortescue

The gas turbine high-temperature gas-cooled reactor (HTGR) power plant combines the existing design HTGR core with a closed-cycle helium gas turbine power conversion system directly in the reactor primary circuit. The high density helium working fluid results in a very compact power conversion system. While the geometries of the helium turbomachinery, heat exchangers, and internal gas flow paths differ from air breathing gas turbines because of the nature of the working fluid and the high degree of pressurization, many of the aerodynamic, heat transfer and dynamic analytical procedures used in the design are identical to conventional open-cycle industrial gas turbine practice. This paper outlines some of the preliminary design considerations for the rotating machinery, heat exchangers, and other major primary system components for an integrated type of plant embodying multiple gas turbine loops. The high potential for further improvement in plant efficiency and capacity, for both advanced dry-cooled and waste heat power cycle versions of the direct-cycle nuclear gas turbine, is also discussed.


1976 ◽  
Author(s):  
C. F. McDonald ◽  
P. Fortescue ◽  
J. M. Krase

The Gas Turbine High Temperature Gas Cooled Reactor (GT-HTGR) power plant combines the existing HTGR core with a closed-cycle helium gas turibne power-conversion system directly in the reactor primary circuit. An integrated design concept in which the reactor core, turbomachinery, heat exchangers, and entire helium inventory are enclosed within the prestressed concrete reactor vessel (PCRV) was selected on the basis of both safety and economic reasons. Th layout of the power-conversion loop (PCL) components, with envelope restraints associated with installation in cavities in the PCRV, and development of the primary system gas flow paths are discussed. This paper outlines the studies which led to the selection of the primary system for an integrated type of plant embodying multiple gas turbine loops. With orientation and configuration of the major components in the PCL forming the basis of these studies, some of the preliminary design considerations for the turbomachinery, heat exchangers, and other components are discussed. The high potential for further improvement in plant efficiency and capacity, for both advanced dry-cooled and waste heat power cycle versions of the direct cycle nuclear gas turbine, is also discussed.



Author(s):  
Colin F. McDonald

For closed-cycle gas turbines, in a size to meet utility power generation needs, the selection of helium as the working fluid represents the best solution in terms of the overall power conversion system considering the differing requirements of the turbomachinery and heat exchangers. Helium is well suited for the nuclear Brayton cycle because it is neutronically inert. The impact of helium’s unique properties on the performance and size of the power conversion system components is discussed in this paper. The helium gas turbine plants, that have operated were based on 1950s and 1960s technology, represent a valuable technology base in terms of practical experience gained. However, the design of the Gas Turbine Modular Helium Reactor (GT-MHR), which could see utility service in the first decade of the 21st century will utilize turbomachinery and heat exchanger technologies from the combustion gas turbine and aerospace industries. An understanding of how the design of power conversion systems for closed-cycle plants and combustion gas turbines are affected by the working fluids (i.e., helium and air, respectively) is the major theme of this paper.



1977 ◽  
Vol 99 (2) ◽  
pp. 237-245 ◽  
Author(s):  
C. F. McDonald ◽  
T. Van Hagan ◽  
K. Vepa

The Gas Turbine High Temperature Gas Cooled Reactor (GT-HTGR) power plant combines the existing design HTGR core with a closed-cycle helium gas turbine power conversion system directly in the reactor primary circuit. Unlike open-cycle gas turbines where the recuperative heat exchanger is an optional component, the high cycle efficiency of the nuclear closed-cycle gas turbine is attributable to a high degree to the incorporation of the recuperator (helium-to-helium) and precooler (helium-to-water) exchangers in the power conversion loop. For the integrated plant configuration, a nonintercooled cycle with a high degree of heat recuperation was selected on the basis of performance and economic optimization studies. A recuperator of high effectiveness was chosen because it significantly reduces the optimum pressure ratio (for maximum cycle efficiency), and thus reduces the number of compressor and turbine stages for the low molecular weight, high specific heat, helium working fluid. Heat rejection from the primary system is effected by a helium-to-water precooler, which cools the gas to a low level prior to compression. The fact that the rejection heat is derived from the sensible rather than the latent heat of the cycle working fluid results in dissipation over a wide band of temperature, the high average rejection temperature being advantageous for either direct air cooling or for generation of power in a waste heat cycle. The high heat transfer rates in the recuperator (3100 MWt) and precooler (1895 MWt), combined with the envelope restraints associated with heat exchanger integration in the prestressed concrete reactor vessel, require the use of more compact surface geometries than in contemporary power plant steam generators. Various aspects of surface geometry, flow configuration, mechanical design, fabrication, and integration of the heat exchangers are discussed for a plant in the 1100 MWe class. The influence of cycle parameters on the relative sizes of the recuperator and precooler are also presented. While the preliminary designs included are not meant to represent final solutions, they do embody features that satisfy many of the performance, structural, safety, and economic requirements.



Author(s):  
Colin F. McDonald ◽  
Kosla Vepa

This paper describes the turbomachinery design considerations for a supercritical Rankine cycle waste heat power conversion system for use with the large helium closed-cycle gas turbine nuclear power plant under development by General Atomic Company. The conceptual designs of the ammonia turbine and pump are presented. The high density working fluid in the ammonia turbine results in small blade heights and high hub-to-tip ratios due to a combination of the properties of ammonia and the high degree of pressurization, particularly at the turbine exit. With the molecular weight of the ammonia working fluid being very similar to steam, the double-flow, multistage axial ammonia turbine bears a strong resemblance to modern steam turbines. Conceptual design work has been done in sufficient detail to support component cost estimates for the balance of plant economic studies. While an extensive design program is needed for the ammonia turbine, existing technology from the power generating and chemical process industries is generally applicable; and, with specialized design attention, the goal of high turbine efficiency should be realizable. The design studies have been specifically directed toward a nuclear closed-cycle helium gas turbine plant (GT-HTGR); however, it is postulated that the turbine design considerations presented could be applicable to other low temperature power conversion systems such as geothermal or industrial waste heat applications.



Author(s):  
Ali Afrazeh ◽  
Hiwa Khaledi ◽  
Mohammad Bagher Ghofrani

A gas turbine in combination with a nuclear heat source has been subject of study for some years. This paper describes the advantages of a gas turbine combined with an inherently safe and well-proven nuclear heat source. The design of the power conversion system is based on a regenerative, non-intercooled, closed, direct Brayton cycle with high temperature gas-cooled reactor (HTGR), as heat source and helium gas as the working fluid. The plant produces electricity and hot water for district heating (DH). Variation of specific heat, enthalpy and entropy of working fluid with pressure and temperature are included in this model. Advanced blade cooling technology is used in order to allow for a high turbine inlet temperature. The paper starts with an overview of the main characteristics of the nuclear heat source, Then presents a study to determine the specifications of a closed-cycle gas turbine for the HTGR installation. Attention is given to the way such a closed-cycle gas turbine can be modeled. Subsequently the sensitivity of the efficiency to several design choices is investigated. This model is developed in Fortran.



1981 ◽  
Vol 103 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Colin F. McDonald ◽  
Murdo J. Smith

For several years, design studies have been underway in the U.S. on a nuclear closed-cycle gas turbine plant (HTGR-GT). This paper presents design aspects of the helium turbo-machine portion of these studies. Gas dynamic and mechanical design considerations are presented for helium turbomachines in the 400 MWe (non-intercooled) and 600 MWe (intercooled) power range. Design of the turbomachine is a key element in the overall power plant program effort, which is currently directed towards the selection of a reference HTGR-GT commercial plant configuration for the U.S. utility market. A conservative design approach has been emphasized to provide for maximum safety and durability. The studies presented for the integrated plant concept outline the necessary close working relationship between the reactor primary system and turbomachine designers. State-of-the-art technology from large industrial gas turbines developed in the U.S., considered directly applicable to the design of a helium turbomachine, particularly in the areas of design methodology, performance, materials, and fabrication methods, is emphasized.



Author(s):  
R. G. Adams ◽  
F. H. Boenig

The Gas Turbine HTGR, or “Direct Cycle” High-Temperature Gas-Cooled, Reactor power plant, uses a closed-cycle gas turbine directly in the primary coolant circuit of a helium-cooled high-temperature nuclear reactor. Previous papers have described configuration studies leading to the selection of reactor and power conversion loop layout, and the considerations affecting the design of the components of the power conversion loop. This paper discusses briefly the effects of the helium working fluid and the reactor cooling loop environment on the design requirements of the direct-cycle turbomachinery and describes the mechanical arrangement of a typical turbomachine for this application. The aerodynamic design is outlined, and the mechanical design is described in some detail, with particular emphasis on the bearings and seals for the turbomachine.



Author(s):  
V.D. Molyakov ◽  
B.A. Kunikeev ◽  
N.I. Troitskiy

Closed-cycle gas turbine units can be used as power plants for advanced nuclear power stations, spacecraft, ground, surface and underwater vehicles. The purpose and power capacity of closed gas turbine units (CGTU) determine their specific design schemes, taking into account efficient operation of the units both in the nominal (design) mode and in partial power modes. Control methods of both closed and open gas turbine units depend on the scheme and design of the installation but the former differ from the latter mainly in their ability to change gas pressure at the entrance to the low-pressure compressor. This pressure can be changed by controlling the mass circulating in the CGTU circuit, adding or releasing part of the working fluid from the closed system as well as by internal bypassing of the working fluid. At a constant circulating mass in the single-shaft CGTU, the temperature of the gas before the turbines and the shaft speed can be adjusted depending on the type of load. The rotational speed of the turbine shaft, blocked with the compressor, can be adjusted in specific ways, such as changing the cross sections of the flow of the impellers. At a constant mass of the working fluid, the pressure at the entrance to the low-pressure compressor varies depending on the control program. The efficiency of the CGTU in partial power modes depends on the installation scheme, control method and program. The most economical control method is changing the pressure in the circuit. Extraction of the working fluid into special receivers while maintaining the same temperature in all sections of the unit leads to a proportional decrease in the density of the working fluid in all sections and the preservation of gas-dynamic similarity in the nodes (compressors, turbines and pipelines). Specific heat flux rates, and therefore, temperatures change slightly in heat exchangers. As the density decreases, heat fluxes change, as the heat transfer coefficient decreases more slowly than the density of the working fluid. With a decrease in power, this leads to a slight increase in the degree of regeneration and cooling in the heat exchangers. The underestimation of these phenomena in the calculations can be compensated by the underestimation of the growth of losses in partial power modes.



Author(s):  
C. F. McDonald ◽  
L. Cavallaro ◽  
D. Kapich ◽  
W. A. Medwid

To meet the energy needs of special terrestrial defense installations, where a premium is placed on high plant efficiency, conceptual studies have been performed on an advanced closed-cycle gas turbine system with a high-temperature gas-cooled reactor (HTGR) as the heat source. Emphasis has been placed on system compactness and plant simplicity. A goal of plant operation for extended periods with no environmental contact had a strong influence on the design features. To realize a high plant efficiency (over 50%) for this mode of operation, a combined cycle was investigated. A primary helium Brayton power conversion system coupled with a Freon bottoming cycle was selected. The selection of a gas turbine power conversion system is very much related to applications where high efficiency is paramount and this can be realized with the utilization of a cold heat sink. Details are presented of the reactor arrangement, power conversion system, major components, installation, and performance for a compact nuclear power plant currently in a very early stage of concept definition.



Author(s):  
Roger Anderson ◽  
Fermin Viteri ◽  
Rebecca Hollis ◽  
Ashley Keating ◽  
Jonathan Shipper ◽  
...  

Future fossil-fueled power generation systems will require carbon capture and sequestration to comply with government green house gas regulations. The three prime candidate technologies that capture carbon dioxide (CO2) are pre-combustion, post-combustion and oxy-fuel combustion techniques. Clean Energy Systems, Inc. (CES) has recently demonstrated oxy-fuel technology applicable to gas turbines, gas generators, and reheat combustors at their 50MWth research test facility located near Bakersfield, California. CES, in conjunction with Siemens Energy, Inc. and Florida Turbine Technologies, Inc. (FTT) have been working to develop and demonstrate turbomachinery systems that accommodate the inherent characteristics of oxy-fuel (O-F) working fluids. The team adopted an aggressive, but economical development approach to advance turbine technology towards early product realization; goals include incremental advances in power plant output and efficiency while minimizing capital costs and cost of electricity [1]. Proof-of-concept testing was completed via a 20MWth oxy-fuel combustor at CES’s Kimberlina prototype power plant. Operability and performance limits were explored by burning a variety of fuels, including natural gas and (simulated) synthesis gas, over a wide range of conditions to generate a steam/CO2 working fluid that was used to drive a turbo-generator. Successful demonstration led to the development of first generation zero-emission power plants (ZEPP). Fabrication and preliminary testing of 1st generation ZEPP equipment has been completed at Kimberlina power plant (KPP) including two main system components, a large combustor (170MWth) and a modified aeroderivative turbine (GE J79 turbine). Also, a reheat combustion system is being designed to improve plant efficiency. This will incorporate the combustion cans from the J79 engine, modified to accept the system’s steam/CO2 working fluid. A single-can reheat combustor has been designed and tested to verify the viability and performance of an O-F reheater can. After several successful tests of the 1st generation equipment, development started on 2nd generation power plant systems. In this program, a Siemens SGT-900 gas turbine engine will be modified and utilized in a 200MWe power plant. Like the 1st generation system, the expander section of the engine will be used as an advanced intermediate pressure turbine and the can-annular combustor will be modified into a O-F reheat combustor. Design studies are being performed to define the modifications necessary to adapt the hardware to the thermal and structural demands of a steam/CO2 drive gas including testing to characterize the materials behavior when exposed to the deleterious working environment. The results and challenges of 1st and 2nd generation oxy-fuel power plant system development are presented.



Sign in / Sign up

Export Citation Format

Share Document