Modeling and Analysis of Power Conversion System for High Temperature Gas Cooled Reactor With Cogeneration

Author(s):  
Ali Afrazeh ◽  
Hiwa Khaledi ◽  
Mohammad Bagher Ghofrani

A gas turbine in combination with a nuclear heat source has been subject of study for some years. This paper describes the advantages of a gas turbine combined with an inherently safe and well-proven nuclear heat source. The design of the power conversion system is based on a regenerative, non-intercooled, closed, direct Brayton cycle with high temperature gas-cooled reactor (HTGR), as heat source and helium gas as the working fluid. The plant produces electricity and hot water for district heating (DH). Variation of specific heat, enthalpy and entropy of working fluid with pressure and temperature are included in this model. Advanced blade cooling technology is used in order to allow for a high turbine inlet temperature. The paper starts with an overview of the main characteristics of the nuclear heat source, Then presents a study to determine the specifications of a closed-cycle gas turbine for the HTGR installation. Attention is given to the way such a closed-cycle gas turbine can be modeled. Subsequently the sensitivity of the efficiency to several design choices is investigated. This model is developed in Fortran.

Author(s):  
Colin F. McDonald

With the capability of burning a variety of fossil fuels, giving high thermal efficiency, and operating with low emissions, the gas turbine is becoming a major prime-mover for a wide spectrum of applications. Almost three decades ago two experimental projects were undertaken in which gas turbines were actually operated with heat from nuclear reactors. In retrospect, these systems were ahead of their time in terms of technology readiness, and prospects of the practical coupling of a gas turbine with a nuclear heat source towards the realization of a high efficiency, pollutant free, dry-cooled power plant has remained a long-term goal, which has been periodically studied in the last twenty years. Technology advancements in both high temperature gas-cooled reactors, and gas turbines now make the concept of a nuclear gas turbine plant realizable. Two possible plant concepts are highlighted in this paper, (1) a direct cycle system involving the integration of a closed-cycle helium gas turbine with a modular high temperature gas cooled reactor (MHTGR), and (2) the utilization of a conventional and proven combined cycle gas turbine, again with the MHTGR, but now involving the use of secondary (helium) and tertiary (air) loops. The open cycle system is more equipment intensive and places demanding requirements on the very high temperature heat exchangers, but has the merit of being able to utilize a conventional combined cycle turbo-generator set. In this paper both power plant concepts are put into perspective in terms of categorizing the most suitable applications, highlighting their major features and characteristics, and identifying the technology requirements. The author would like to dedicate this paper to the late Professor Karl Bammert who actively supported deployment of the closed-cycle gas turbine for several decades with a variety of heat sources including fossil, solar, and nuclear systems.


Author(s):  
Colin F. McDonald

Many variants of the nuclear closed Brayton cycle (NCBC) power plant have been studied over the last five decades, the ultimate goal being the introduction of a high efficiency and environmentally acceptable plant for electrical power generation. With an indirect cycle (IDC) plant the thermal energy from a high temperature reactor (HTR) is transferred to the helium gas turbine power conversion system via an intermediate heat exchanger. Compared with previous direct cycle variants the decoupling of the prime-mover from the reactor has the following advantages, 1) configuration flexibility (eased congestion), 2) good component access, 3) non radioactive power conversion system, 4) ease of maintenance, 5) use of conventional equipment, 6) reduced development effort, and 7) eased adaptability to a fossil-fired source. In addition to being a more practical configuration, a major attribute for the IDC is that it is compatible with long-term plans for development of a high temperature nuclear heat source (NHS) currently underway in Japan. With a NHS in place a logical progression of the HTR would be to deploy a power generation version using an IDC helium gas turbine. This paper sheds new light on the nuclear gas turbine in that it is no longer at the forefront of gas cooled reactor application studies, but rather could be a beneficiary of work currently underway in Japan to develop a nuclear heat source for high temperature process heat. The performance and major features of a future NCBC plant concept are highlighted in this paper. Depending on the market forces prevailing in Asia for small nuclear plants, the NCBC with an indirect cycle helium gas turbine could be available for service around the year 2020.


Author(s):  
S. T. Robinson

During the past few months there has been a renewed expression of interest in the high-temperature gas-cycle reactor coupled with a closed-cycle gas turbine in a single loop as a means of utilizing the energy available from nuclear fission. At present the procurement of two closed-cycle gas-turbine plants is planned in this country, both of which are suitable for use with a gas-cycle nuclear reactor as a heat source. These plants differ widely in output, purpose and the nature of the working fluid. One of the questions repeatedly raised during their design was the effect of the nature and characteristics of the working fluid on the design of the nonnuclear components. This pointed to the desirability of a specific study along these lines, which study was conducted by the author’s firm and is partially reported herein.


Author(s):  
R. G. Adams ◽  
F. H. Boenig

The Gas Turbine HTGR, or “Direct Cycle” High-Temperature Gas-Cooled, Reactor power plant, uses a closed-cycle gas turbine directly in the primary coolant circuit of a helium-cooled high-temperature nuclear reactor. Previous papers have described configuration studies leading to the selection of reactor and power conversion loop layout, and the considerations affecting the design of the components of the power conversion loop. This paper discusses briefly the effects of the helium working fluid and the reactor cooling loop environment on the design requirements of the direct-cycle turbomachinery and describes the mechanical arrangement of a typical turbomachine for this application. The aerodynamic design is outlined, and the mechanical design is described in some detail, with particular emphasis on the bearings and seals for the turbomachine.


Author(s):  
Colin F. McDonald

For closed-cycle gas turbines, in a size to meet utility power generation needs, the selection of helium as the working fluid represents the best solution in terms of the overall power conversion system considering the differing requirements of the turbomachinery and heat exchangers. Helium is well suited for the nuclear Brayton cycle because it is neutronically inert. The impact of helium’s unique properties on the performance and size of the power conversion system components is discussed in this paper. The helium gas turbine plants, that have operated were based on 1950s and 1960s technology, represent a valuable technology base in terms of practical experience gained. However, the design of the Gas Turbine Modular Helium Reactor (GT-MHR), which could see utility service in the first decade of the 21st century will utilize turbomachinery and heat exchanger technologies from the combustion gas turbine and aerospace industries. An understanding of how the design of power conversion systems for closed-cycle plants and combustion gas turbines are affected by the working fluids (i.e., helium and air, respectively) is the major theme of this paper.


Author(s):  
C. F. McDonald ◽  
R. G. Adams ◽  
F. R. Bell ◽  
P. Fortescue

The gas turbine high-temperature gas-cooled reactor (HTGR) power plant combines the existing design HTGR core with a closed-cycle helium gas turbine power conversion system directly in the reactor primary circuit. The high density helium working fluid results in a very compact power conversion system. While the geometries of the helium turbomachinery, heat exchangers, and internal gas flow paths differ from air breathing gas turbines because of the nature of the working fluid and the high degree of pressurization, many of the aerodynamic, heat transfer and dynamic analytical procedures used in the design are identical to conventional open-cycle industrial gas turbine practice. This paper outlines some of the preliminary design considerations for the rotating machinery, heat exchangers, and other major primary system components for an integrated type of plant embodying multiple gas turbine loops. The high potential for further improvement in plant efficiency and capacity, for both advanced dry-cooled and waste heat power cycle versions of the direct-cycle nuclear gas turbine, is also discussed.


2005 ◽  
Vol 127 (2) ◽  
pp. 358-368 ◽  
Author(s):  
Shoko Ito ◽  
Hiroshi Saeki ◽  
Asako Inomata ◽  
Fumio Ootomo ◽  
Katsuya Yamashita ◽  
...  

In this paper we describe the conceptual design and cooling blade development of a 1700°C-class high-temperature gas turbine in the ACRO-GT-2000 (Advanced Carbon Dioxide Recovery System of Closed-Cycle Gas Turbine Aiming 2000 K) project. In the ACRO-GT closed cycle power plant system, the thermal efficiency aimed at is more than 60% of the higher heating value of fuel (HHV). Because of the high thermal efficiency requirement, the 1700°C-class high-temperature gas turbine must be designed with the minimum amount of cooling and seal steam consumption. The hybrid cooling scheme, which is a combination of closed loop internal cooling and film ejection cooling, was chosen from among several cooling schemes. The elemental experiments and numerical studies, such as those on blade surface heat transfer, internal cooling channel heat transfer, and pressure loss and rotor coolant passage distribution flow phenomena, were conducted and the results were applied to the conceptual design advancement. As a result, the cooling steam consumption in the first stage nozzle and blade was reduced by about 40% compared with the previous design that was performed in the WE-NET (World Energy Network) Phase-I.


2003 ◽  
Vol 2 (3) ◽  
pp. 319-331
Author(s):  
Shinichi KOSUGIYAMA ◽  
Takakazu TAKIZUKA ◽  
Kazuhiko KUNITOMI ◽  
Xing YAN ◽  
Shoji KATANISHI ◽  
...  

2002 ◽  
Vol 1 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Shoji TAKADA ◽  
Takakazu TAKIZUKA ◽  
Kazuhiko KUNITOMI ◽  
Xing YAN ◽  
Shoji KATANISHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document