Circulator Design/Technology Evolution for Gas-Cooled Nuclear Reactors

Author(s):  
Colin F. McDonald ◽  
Ian R. Marshall ◽  
John Donaldson ◽  
Davdrin D. Kapich

The circulator is a key component in a gas-cooled nuclear power plant since it facilitates transfer of the reactor thermal energy (via the steam generator) to the electrical power conversion system. Circulator technology is well established and about 200 machines, which, in their simplest form, consist of an electrical motor driven compressor, have operated for many millions of hours worldwide in gas-cooled reactors. This paper covers the evolution of circulator design, technology and operating experience, with particular emphasis on how lessons learned over the last four decades (dominantly from the carbon dioxide cooled plants in the U.K.) are applicable to the helium cooled Modular High Temperature Gas-Cooled Reactor (MHTCR) which should see service in the U.S. at the turn of the next century. State-of-the-art technologies are covered in the areas of impeller selection, bearings, drive system, machine operation, and future trends are Identified.

From the first self-sustaining nuclear reaction to the present day represents a span of three decades: within that time large-scale generation of electrical power from nuclear energy has become acknowledged as economic, safe and environmentally acceptable. Within the U .K . 10% of electricity consumed is of nuclear origin. Some of the C.E.G.B. reactors have been in service for over 10 years. The operating experience that has been gained shows how the original design concepts have been ultimately developed. Some of the difficulties encountered and the engineering solutions are presented. Operating experience feeds back to the design philosophy and safety requirements for future nuclear plant. In this way a foundation is provided for the further exploitation of what must become a major source of energy in the next decade.


Author(s):  
Ronald J. Payne ◽  
Stephen Levesque

Stress corrosion cracking of Alloy 600 has lead to the modification and replacement of many nuclear power plant components. Among these components are the Bottom Mounted Nozzles (BMN) of the Reactor Pressure Vessel (RPV). Modifications of these components have been performed on an emergent basis. Since that time, Framatome ANP has developed state-of-the-art modification methods for the repair of BMNs using the Electrical Power Research Institute (EPRI) managed Materials Reliability Program (MRP) attributes for an ideal repair as a basis for evaluation of modification concepts. These attributes were used to evaluate the optimal modification concepts and develop processes and tooling to support future modification activity. This paper details the BMN configurations, modification evaluation criteria, several modification concepts, and the development of the tooling to support the optimal modification scenarios.


Author(s):  
C. F. Chuang ◽  
H. P. Chou

The Lungmen Nuclear Power Station (LNPS) is currently under construction in Taiwan, which consists of two advanced boiling water reactor (ABWR) units. The instrumentation and control (I&C) systems of the LNPS are based on the state-of-the-art modernized fully integrated digital design. This paper presents regulatory overviews, regulatory requirements, current major regulatory issues, as well as the areas of regulatory concerns and the lessons learned on the digital I&C systems in the Lungmen Project.


Author(s):  
Jessica Stevens ◽  
Kevin LaFerriere ◽  
Ryan Flamand NuScale

A control room simulator was designed to model the operation of a NuScale small modular reactor (SMR) nuclear power plant and provide enough fidelity to perform staffing validation studies for Nuscale’s Nuclear Regulatory Commission Design Certification Application. The simulator serves as a simulated control room with work stations to mimic the operation of an SMR module, turbine generator, and support systems using a proprietary human system interface (HSI) software package. The simulator, which includes all HSI screens, was designed by a team of Human Factors and Plant Operations staff to capitalize on best practices, lessons learned, and operating experience using the Agile development process. Finally, the design process included the development of plant operating procedures and training material as well as a training platform for future plant operators at an SMR nuclear power plant.


Author(s):  
Dennis J. Schumerth

Amidst the clamor and increasing world demand for energy, the continued use of fossil fuels for electric power generation has recently emerged as the bane of the industry. Green power is being championed as the new fuel de jour kid on the block. Environmentalists and other global warming advocates are successfully lobbying their political agendas for emission caps, carbon sequestration, NOx and SOx and other greenhouse gas limits. In many cases, these efforts have resulted in the outright cancellation, delay or unit reductions of new coal-fired plants. Similarly, simple and combined cycle gas turbine (CCGT) units, popularized during the Enron “gas bubble” era are at the mercy of unstable fuel prices which have, in large part, relegated this generation type from base load to load follow. Wind, biomass, hydro, photovoltaic and other renewables continue to produce an increased percentage of the power base but total contribution remains costly, inefficient and pitifully low. Enter the nuclear renaissance. A dramatic paradigm shift, even by the green power advocates, has allowed the nuclear phoenix to rise with the promise of emission-free power, generation efficiencies, increasing ROI revenues and demonstrating an enviable safety record since TMI and Chernobyl. Assuming this energy source conceives and bears the gestated fruit of a renaissance, the next decade will be telling in terms of the challenges brought forward by licensing, design, financing, construction and operation of a new generation of nuclear power reactors. Paramount among these is a new, time-tested generation of construction materials that will be evaluated to insure a 40 to 60 or even 80 year operational life of these new plants. Consider the problematic copper materials that were chosen during the early 70’s for their high thermal conductivity, competitive cost and ease of fabrication. Contrast these past lessons-learned to current-day, state-of-the-art generation fleet construction standards where demonstrated long-term sustainability coupled with state-of-the-art designs & materials must emerge as the prominent industry players of choice. The paper will examine these and other relevant aspects of the technical and commercial supply chain that is predicted to both challenge and reward designers and material suppliers well into the next decade.


Author(s):  
C. F. McDonald ◽  
L. Cavallaro ◽  
D. Kapich ◽  
W. A. Medwid

To meet the energy needs of special terrestrial defense installations, where a premium is placed on high plant efficiency, conceptual studies have been performed on an advanced closed-cycle gas turbine system with a high-temperature gas-cooled reactor (HTGR) as the heat source. Emphasis has been placed on system compactness and plant simplicity. A goal of plant operation for extended periods with no environmental contact had a strong influence on the design features. To realize a high plant efficiency (over 50%) for this mode of operation, a combined cycle was investigated. A primary helium Brayton power conversion system coupled with a Freon bottoming cycle was selected. The selection of a gas turbine power conversion system is very much related to applications where high efficiency is paramount and this can be realized with the utilization of a cold heat sink. Details are presented of the reactor arrangement, power conversion system, major components, installation, and performance for a compact nuclear power plant currently in a very early stage of concept definition.


Author(s):  
James J. Sienicki ◽  
Anton Moisseytsev ◽  
Lubomir Krajtl

Although a number of power conversion applications have been identified or have even been developed (e.g., waste heat recovery) for supercritical carbon dioxide (S-CO2) cycles including fossil fuel combustors, concentrated solar power (i.e., solar power towers), and marine propulsion, the benefits of S-CO2 Brayton cycle power conversion are especially prominent for applications to nuclear power reactors. In particular, the S-CO2 Brayton cycle is well matched to the Sodium-Cooled Fast Reactor (SFR) nuclear power reactor system and offers significant benefits for SFRs. The recompression closed Brayton cycle is highly recuperated and wants to operate with an approximate optimal S-CO2 temperature rise in the sodium-to-CO2 heat exchangers of about 150 °C which is well matched to the sodium temperature rise through the core that is also about 150 °C. Use of the S-CO2 Brayton cycle eliminates sodium-water reactions and can reduce the nuclear power plant cost per unit electrical power. A conceptual design of an optimized S-CO2 Brayton cycle power converter and supporting systems has been developed for the Advanced Fast Reactor – 100 (AFR-100) 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR). The AFR-100 is under ongoing development at Argonne National Laboratory (ANL) to target emerging markets where a clean, secure, and stable source of electricity is required but a large-scale power plant cannot be accommodated. The S-CO2 Brayton cycle components and cycle conditions were optimized to minimize the power plant cost per unit electrical power (i.e., $/kWe). For a core outlet temperature of 550 °C and turbine inlet temperature of 517 °C, a cycle efficiency of 42.3 % is calculated that exceeds that obtained with a traditional superheated steam cycle by one percentage point or more. A normal shutdown heat removal system incorporating a pressurized pumped S-CO2 loop slightly above the critical pressure on each of the two intermediate sodium loops has been developed to remove heat from the reactor when the power converter is shut down. Three-dimensional layouts of S-CO2 Brayton cycle power converter and shutdown heat removal components and piping have been determined and three-dimensional CAD drawings prepared. The S-CO2 Brayton cycle power converter is found to have a small footprint reducing the space requirements for components and systems inside of both the turbine generator building and reactor building. The results continue to validate earlier notions about the benefits of S-CO2 Brayton cycle power conversion for SFRs including higher efficiency, improved economics, elimination of sodium-water reactions, load following, and smaller footprint.


Author(s):  
Colin F. McDonald

Since the onset of gas-cooled reactor work, almost half a century ago, the potential for direct coupling of a nuclear heat source with a gas turbine power conversion system was recognized, however, the technologies for the realization of this were not available, and the plants operated to date have used Rankine steam turbine power conversion systems. In the early 1990s, technology transfer from the gas turbine and aerospace industries, now make possible the introduction of the gas turbine modular helium reactor (GT-MHR) for utility power generation within the next decade. In this paper the enabling technologies for the helium gas turbine power conversion system are discussed, and these include the turbomachinery, magnetic bearings, compact heat exchangers, and helium system operating experience. Utilizing proven technology, the first GT-MHR plant would operate with an efficiency of 47%, and by exploiting its full potential this could perhaps reach as high as 60% early in the next century.


Sign in / Sign up

Export Citation Format

Share Document