Navier-Stokes Simulation of the Flow Around a Leading Edge Film-Cooled Turbine Blade Including the Interior Cooling System and Comparison With Experimental Data

Author(s):  
Dirk T. Vogel

The three dimensional flow around an extensively investigated slot film cooled turbine blade is numerically investigated using a multi block finite volume Navier-Stokes solver. Three blowing rates are simulated including the whole geometry of the interior blade cooling system and slots. Due to the ejection at the blade leading edge and the geometry of the cooling slots a very complex turbulent three dimensional flow field is generated. The size and shape of the flow separation zones depending on the film cooling ejection is systematically investigated using several two-equation models, e.g. the standard and low Reynolds k–ε-Model of Lam and Bremhorst (1981) r[4], the extension of Kato/Launder (1993) [3] and the k–ω-Model of Wilcox (1991) [10], whereas the results of the standard k–ε-Model are presented. Experimental data obtained by Laser velocimetry, oil-flow pictures and pressure probes are used to understand the complex flow field and to validate the Navier-Stokes solver. The multi-block code applies a traditional Jameson type solver and an implicit solver using several spatial discretization schemes for the convective fluxes. The two-equation models are solved using an RED-BLACK implicit technique with first order spatial upwind discretization to guarantee stability.

Author(s):  
Jochen Gier ◽  
Sabine Ardey ◽  
Adam Heisler

The complex three-dimensional flow field in a highly loaded three-stage LPT is analysed on the basis of a steady three-dimensional flow simulation. The quality of the simulation concerning this configuration is demonstrated by means of a comparison with extensive experimental data gathered in a turbine test rig. For an accurate representation of the transitional character of the turbine flow a modified version of the Abu-Ghannam Shaw transition model is employed in the TRACE_S Navier-Stokes code in connection with a two-equation turbulence model. The flow field of this highly loaded turbine is characterised by complex secondary flow pattern as well as local separation and reattachment zones. The need and applicability of transition modelling is demonstrated by a comparison with a fully turbulent calculation and experimental flow visualisation. The basic flow structure is described in terms of several characteristic quantities and discussed in detail. For further analysis variations of the point of operation and the geometry also based on experiments are included in this investigation.


2000 ◽  
Vol 16 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Dieter Bohn ◽  
Volker Becker ◽  
Karsten Kusterer ◽  
Leonhard Fottner ◽  
Sabine Ardey

2017 ◽  
Author(s):  
Adnan Ismael ◽  
Hamid Hussein ◽  
Mohammed Tareq ◽  
Mustafa Gunal

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 724-732
Author(s):  
Changchun Ji ◽  
Yudong Wang

AbstractTo investigate the distribution characteristics of the three-dimensional flow field under the slot die, an online measurement of the airflow velocity was performed using a hot wire anemometer. The experimental results show that the air-slot end faces have a great influence on the airflow distribution in its vicinity. Compared with the air velocity in the center area, the velocity below the slot end face is much lower. The distribution characteristics of the three-dimensional flow field under the slot die would cause the fibers at different positions to bear inconsistent air force. The air velocity of the spinning centerline is higher than that around it, which is more conducive to fiber diameter attenuation. The violent fluctuation of the instantaneous velocity of the airflow could easily cause the meltblowing fiber to whip in the area close to the die.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1223
Author(s):  
Max Tönsmann ◽  
Philip Scharfer ◽  
Wilhelm Schabel

Convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, deteriorating product performance. While theoretic stability analyses are abundantly available, experimental data are scarce. We report transient three-dimensional flow field measurements in thin poly(vinyl acetate)-methanol films, drying under ambient conditions with several films exhibiting short-scale Marangoni convection cells. An initial assessment of the upper limit of thermal and solutal Marangoni numbers reveals that the solutal effect is likely to be the dominant cause for the observed instabilities.


Sign in / Sign up

Export Citation Format

Share Document