scholarly journals A CFD Benchmark Study: Leading Edge Film-Cooling With Compound Angle Injection

Author(s):  
C. A. Martin ◽  
K. A. Thole

This paper presents a blind CFD benchmark of a simulated leading edge for a turbine airfoil. The geometry studied was relevant for current designs with two rows of staggered film-cooling holes located at the stagnation location (θ = 0°) and at θ = 25°. Both rows of cooling holes were blowing in the same direction which was 90° relative to the streamwise direction and had an injection angle with respect to the surface of 20°. Realistic engine conditions were simulated including a density ratio of DR = 1.8 and an average blowing ratio of M = 2 for both rows of cooling holes. This blind benchmark coincided with an experimental study that took place in a wind tunnel simulation of a quarter cylinder followed by a flat afterbody. At the stagnation region, the CFD calculation overpredicted the adiabatic effectiveness because the model failed to predict a small separation region that was measured in the experiments. Good agreement was achieved, however, between the CFD predictions and the experimentally measured values of the laterally averaged adiabatic effectiveness downstream of the stagnation location. The coolant pathlines showed that flow passed from the first row of holes over the second row of cooling holes indicating a waste of the coolant.

Author(s):  
Sai Shrinivas Sreedharan ◽  
Danesh K. Tafti

Computational studies are carried out using Large Eddy Simulations (LES) to investigate the effect of coolant to mainstream blowing ratio in a leading edge region of a film cooled vane. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R. = 0.5. However, further downstream the larger mass of coolant injected at higher blowing ratios, in spite of the larger jet penetration and dilution, increases the effectiveness with blowing ratio.


Author(s):  
Shiou-Jiuan Li ◽  
Shang-Feng Yang ◽  
Je-Chin Han

The density ratio effect on leading edge showerhead film cooling has been studied experimentally using the pressure sensitive paint (PSP) mass transfer analogy method. Leading edge model is a blunt body with a semi-cylinder and an after body. There are two designs: seven-row and three-row of film cooling holes for simulating vane and blade, respectively. The film holes are located at 0 (stagnation row), ±15, ±30, and ±45 deg for seven-row design, and at 0 and ±30 for three-row design. Four film holes configurations are used for both test designs: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Coolant to mainstream density ratio varies from DR = 1.0, 1.5, to 2.0 while blowing ratio varies from M = 0.5 to 2.1. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900 based on mainstream velocity and diameter of the cylinder. The mainstream turbulence intensity near leading edge model is about 7%. The results show the shaped holes have overall higher film cooling effectiveness than cylindrical holes, and radial angle holes are better than compound angle holes, particularly at higher blowing ratio. Larger density ratio makes more coolant attach to the surface and increases film protection for all cases. Radial angle shaped holes provides best film cooling at higher density ratio and blowing ratio for both designs.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Shiou-Jiuan Li ◽  
Shang-Feng Yang ◽  
Je-Chin Han

The density ratio effect on leading edge showerhead film cooling has been studied experimentally using the pressure sensitive paint (PSP) mass transfer analogy method. The leading edge model is a blunt body with a semicylinder and an after body. There are two designs: seven-row and three-row of film cooling holes for simulating a vane and blade, respectively. The film holes are located at 0 (stagnation row), ±15, ±30, and ±45 deg for the seven-row design, and at 0 and ±30 for the three-row design. Four film hole configurations are used for both test designs: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. The coolant to mainstream density ratio varies from DR = 1.0, 1.5, to 2.0 while the blowing ratio varies from M = 0.5 to 2.1. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900 based on mainstream velocity and diameter of the cylinder. The mainstream turbulence intensity near the leading edge model is about 7%. The results show the shaped holes have an overall higher film cooling effectiveness than the cylindrical holes, and the radial angle holes are better than the compound angle holes, particularly at a higher blowing ratio. A larger density ratio makes more coolant attach to the surface and increases film protection for all cases. Radial angle shaped holes provide the best film cooling at a higher density ratio and blowing ratio for both designs.


Author(s):  
John W. McClintic ◽  
Sean R. Klavetter ◽  
Joshua B. Anderson ◽  
James R. Winka ◽  
David G. Bogard ◽  
...  

In gas turbine engines, film cooling holes are often fed by an internal cross-flow, with flow normal to the direction of the external flow around the airfoil. Many experimental studies have used a quiescent plenum to feed model film cooling holes and thus do not account for the effects of internal cross-flow. In this study, an experimental flat plate facility was constructed to study the effects of internal cross-flow on a row of cylindrical compound angle film cooling holes. Operating conditions were scaled, based on coolant hole Reynolds number and turbulence level, to match realistic turbine engine conditions. A cross-flow channel allowed for coolant to flow alternately in either direction perpendicular to the mainstream flow. Film cooling holes were operated at blowing ratios ranging from 0.5 to 2.0 at a density ratio of 1.5. There are relatively few studies available in literature that focus on the effects of cross-flow on film cooling performance, with no studies examining the effects of internal cross-flow on film cooling with round, compound angled holes. This study showed that significantly greater adiabatic effectiveness was achieved for cross-flow in the opposite direction of the span-wise direction of the coolant holes and provides possible explanations for this result.


Author(s):  
Marcia I. Ethridge ◽  
J. Michael Cutbirth ◽  
David G. Bogard

An experimental study was conducted to investigate the film cooling performance on the suction side of a first stage turbine vane. Tests were conducted on a nine times scale vane model at density ratios of DR = 1.1 and 1.6 over a range of blowing conditions, 0.2 ≤ M ≤ 1.5 and 0.05 ≤ I ≤ 1.2. Two different mainstream turbulence intensity levels, Tu∞ = 0.5% and 20%, were also investigated. The row of coolant holes studied was located in a position of both strong curvature and strong favorable pressure gradient. In addition, its performance was isolated by blocking the leading edge showerhead coolant holes. Adiabatic effectiveness measurements were made using an infrared camera to map the surface temperature distribution. The results indicate that film cooling performance was greatly enhanced over holes with a similar 50° injection angle on a flat plate. Overall, adiabatic effectiveness scaled with mass flux ratio for low blowing conditions and with momentum flux ratio for high blowing conditions. However, for M < 0.5 there was a higher rate of decay for the low density ratio data. High mainstream turbulence had little effect at low blowing ratios, but degraded performance at higher blowing ratios.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is measured by pressure sensitive paint (PSP). The inclination angle (θ) of all the holes is 35 deg, and the compound angle (β) is ±45 deg. Effects of the spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, and 2.0d) between the two interacting jets of DJFC holes are studied, while the streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between the two jets of DJFC holes has different effects at different spanwise distances. For a small spanwise distance (p/d = 0), the interaction between the jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid-spanwise distances (p/d = 0.5 and 1.0), the antikidney vortex pair dominates the interaction and pushes both of the jets down, thus leading to better coolant coverage and higher effectiveness. As the spanwise distance becomes larger (p/d ≥ 1.5), the pressing effect almost disappears, and the antikidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At a higher blowing ratio, the interaction between the jets of DJFC holes happens later.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Sean R. Klavetter ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Jason E. Dees ◽  
Gregory M. Laskowski ◽  
...  

Early stage gas turbine blades feature complicated internal geometries in order to enhance internal heat transfer and to supply coolant for film cooling. Most film cooling experiments decouple the effect of internal coolant feed from external film cooling effectiveness, even though engine parts are commonly fed by cross-flow and feature internal rib turbulators which can affect film cooling. Experiments measuring adiabatic effectiveness were conducted to investigate the effects of turbulated perpendicular cross-flow on a row of 45 deg compound angle cylindrical film cooling holes for a total of eight internal rib configurations. The ribs were angled to the direction of prevailing internal cross-flow at two different angles: 45 deg or 135 deg. The ribs were also positioned at two different spanwise locations relative to the cooling holes: in the middle of the cooling hole pitch and slightly intersecting the holes. Experiments were conducted at a density ratio of DR = 1.5 for a range of blowing ratios including M = 0.5, 0.75, 1.0, 1.5, and 2.0. This study demonstrates that peak effectiveness can be attained through the optimization of cross-flow direction relative to the compound angle direction and rib configuration, verifying the importance of hole inlet conditions in film cooling experiments. It was found that ribs tend to reduce adiabatic effectiveness relative to a baseline, smooth-walled configuration. Rib configurations that directed the internal coolant forward in the direction of the mainstream resulted in higher peak adiabatic effectiveness. However, no other parameters could consistently be identified correlating to increased film cooling performance. It is likely that a combination of factors is responsible for influencing performance, including internal local pressure caused by the ribs, the internal channel flow field, in-hole vortices, and jet exit velocity profiles. This study also attempted to replicate the possibility that film cooling holes may intersect ribs and found that a hole which partially intersects a rib still maintains moderate levels of effectiveness.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
John W. McClintic ◽  
Sean R. Klavetter ◽  
James R. Winka ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
...  

In gas turbine engines, film cooling holes are often fed by an internal crossflow, with flow normal to the direction of the external flow around the airfoil. Many experimental studies have used a quiescent plenum to feed model film cooling holes and thus do not account for the effects of internal crossflow. In this study, an experimental flat plate facility was constructed to study the effects of internal crossflow on a row of cylindrical compound angle film cooling holes. There are relatively few studies available in literature that focus on the effects of crossflow on film cooling performance, with no studies examining the effects of internal crossflow on film cooling with round, compound angled holes. A crossflow channel allowed for coolant to flow alternately in either direction perpendicular to the mainstream flow. Experimental conditions were scaled to match realistic turbine engine conditions at low speeds. Cylindrical compound angle film cooling holes were operated at blowing ratios ranging from 0.5 to 2.0 and at a density ratio (DR) of 1.5. The results from the crossflow experiments were compared to a baseline plenum-fed configuration. This study showed that significantly greater adiabatic effectiveness was achieved for crossflow counter to the direction of coolant injection.


Author(s):  
Sean R. Klavetter ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Jason E. Dees ◽  
Gregory M. Laskowski ◽  
...  

Early stage gas turbine blades feature complicated internal geometries in order to enhance internal heat transfer and to supply coolant for film cooling. Most film cooling experiments decouple the effect of internal coolant feed from external film cooling effectiveness, even though engine parts are commonly fed by cross-flow and feature internal rib turbulators which can affect film cooling. Experiments measuring adiabatic effectiveness were conducted to investigate the effects of turbulated perpendicular cross-flow on a row of 45° compound angle cylindrical film cooling holes for a total of eight internal rib configurations. The ribs were angled to the direction of prevailing internal cross-flow at two different angles: 45° or 135°. The ribs were also positioned at two different span-wise locations relative to the cooling holes: in the middle of the cooling hole pitch, and slightly intersecting the holes. Experiments were conducted at a density ratio of DR = 1.5 for a range of blowing ratios including M = 0.5, 0.75, 1.0, 1.5, and 2.0. This study demonstrates that peak effectiveness can be attained through the optimization of cross-flow direction relative to the compound angle direction and rib configuration, verifying the importance of hole inlet conditions in film cooling experiments. It was found that ribs tend to reduce adiabatic effectiveness relative to a baseline, smooth-walled configuration. Rib configurations that directed the internal coolant forward in the direction of the mainstream resulted in higher peak adiabatic effectiveness. However, no other parameters could consistently be identified correlating to increased film cooling performance. It is likely that a combination of factors is responsible for influencing performance, including internal local pressure caused by the ribs, the internal channel flow field, in-hole vortices, and jet exit velocity profiles. This study also attempted to replicate the possibility that film cooling holes may intersect ribs and found that a hole which partially intersects a rib still maintains moderate levels of effectiveness.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Zhihong Gao ◽  
Je-Chin Han

The effect of film-hole geometry and angle on turbine blade leading edge film cooling has been experimentally studied using the pressure sensitive paint technique. The leading edge is modeled by a blunt body with a semicylinder and an after-body. Two film cooling designs are considered: a heavily film cooled leading edge featured with seven rows of film cooling holes and a moderately film cooled leading edge with three rows. For the seven-row design, the film holes are located at 0 deg (stagnation line), ±15 deg, ±30 deg, and ±45 deg on the model surface. For the three-row design, the film holes are located at 0 deg and ±30 deg. Four different film cooling hole configurations are applied to each design: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Testing was done in a low speed wind tunnel. The Reynolds number, based on mainstream velocity and diameter of the cylinder, is 100,900. The mainstream turbulence intensity is about 7% near of leading edge model and the turbulence integral length scale is about 1.5 cm. Five averaged blowing ratios are tested ranging from M=0.5 to M=2.0. The results show that the shaped holes provide higher film cooling effectiveness than the cylindrical holes, particularly at higher average blowing ratios. The radial angle holes give better effectiveness than the compound angle holes at M=1.0–2.0. The seven-row film cooling design results in much higher effectiveness on the leading edge region than the three-row design at the same average blowing ratio or same amount coolant flow.


Sign in / Sign up

Export Citation Format

Share Document