injection angle
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 63)

H-INDEX

21
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 287
Author(s):  
Jin Hang ◽  
Jingzhou Zhang ◽  
Chunhua Wang ◽  
Yong Shan

Single-row double-jet film cooling (DJFC) of a turbine guide vane is numerically investigated in the present study, under a realistic aero-thermal condition. The double-jet units are positioned at specific locations, with 57% axial chord length (Cx) on the suction side or 28% Cx on the pressure side with respect to the leading edge of the guide vane. Three spanwise spacings (Z) in double-jet unit (Z = 0, 0.5d, and 1.0d, here d is the film hole diameter) and four spanwise injection angles (β = 11°, 17°, 23°, and 29°) are considered in the layout design of double jets. The results show that the layout of double jets affects the coupling of adjacent jets and thus subsequently changes the jet-in-crossflow dynamics. Relative to the spanwise injection angle, the spanwise spacing in a double-jet unit is a more important geometric parameter that affects the jet-in-crossflow dynamics in the downstream flowfield. With the increase in the spanwise injection angle and spanwise spacing in the double-jet unit, the film cooling effectiveness is generally improved. On the suction surface, DJFC does not show any benefit on film cooling improvement under smaller blowing ratios. Only under larger blowing ratios does its positive potential for film cooling enhancement start to show. Compared to the suction surface, the positive potential of the DJFC on enhancing film cooling effectiveness behaves more obviously on the pressure surface. In particular, under large blowing ratios, the DJFC plays dual roles in suppressing jet detachment and broadening the coolant jet spread in a spanwise direction. With regard to the DJFC on the suction surface, its main role in film cooling enhancement relies on the improvement of the spanwise film layer coverage on the film-cooled surface.


2021 ◽  
pp. 1-16
Author(s):  
Samaneh Rouina ◽  
Hamed Abdeh ◽  
Giovanna Barigozzi ◽  
Vittorio Odemondo ◽  
Luca Abba ◽  
...  

Abstract In this study, the influence of geometric factors such as hole diameter (D), length-to-diameter ratio (L/D), injection angle (a), and lateral expansion angle (α) on film cooling effectiveness of holes made using EDM is experimentally investigated. Nine different cooling configurations were tested on a flat plate wind tunnel at various coolant Reynolds number (Rec) and coolant to mainstream blowing ratio (M). The considered flat plate model incorporates engine sized V-shaped holes. EDM reliability is assessed through a hole qualification process, while effectiveness was measured by the Pressure Sensitive Paint (PSP) technique. Results confirm the suitability of EDM for V-shaped hole manufacturing as long as a correct tolerance on α is prescribed. An accurate qualification of hole morphology is also recommended.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7659
Author(s):  
Seung-Il Baek ◽  
Joon Ahn

The effects of pulsations in the main flow on film cooling from a cylindrical hole with a spanwise injection angle (orientation angle) are analyzed using numerical methods. The hole is located on a flat plate with a 35° inclined injection angle, and the compound angle denotes the orientation and inclination angles. The film cooling flow fields for the sinusoidal flow pulsation of 36 Hz from a cylindrical hole with 0° and 30° orientation angles at the time-averaged blowing ratio of M = 0.5 are simulated via large eddy simulation (LES). The CFD results are validated using the experimental data and compared to the Reynolds-averaged Navier–Stokes (RANS) and URANS results. The results reveal that if the pulsation frequency goes from 0 to 36 Hz, the adiabatic film cooling effectiveness decreases regardless of the compound angle; however, the film cooling for the 30° orientation angle exhibits better performance than that for a simple angle (0°). Moreover, if 36 Hz pulsation is applied, the film cooling effectiveness obtained by unsteady RANS exhibits a large deviation from the experimental data, unlike the LES results. The credibility of the LES results relative to the experimental data is demonstrated by comparing the time-averaged η and the phase-averaged temperature contours. The LES results demonstrate that LES can more accurately predict η than the experimental data; in contrast, URANS results are highly overpredicted around the centerline of the coolant spreading. Thus, LES results are more consistent with the experimental results for the time- and phase-averaged temperature contours than the URANS results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan Cao ◽  
Hamdi Ayed ◽  
Tuqa Abdulrazzaq ◽  
Taza Gul ◽  
Abdul Bariq ◽  
...  

The numerical model of the pipes of a flat plate solar collector (FPSC) with several nozzles has been investigated in the present study. Indeed, the effect of the number of nozzles of the swirl generator on the entropic characteristics has been evaluated. The nozzles were applied for improving the performance of FPSC. For evaluating the proposed system based on the entropy concept, the effect of injection angle and mass flow rate has been considered. The selected injection angles were 30°, 45°, 60°, and 90°. Also, the total mass flow rates entered from all of the nozzles were 0.2 kg/s, 1 kg/s, and 2 kg/s. The effect of said variables on frictional and thermal entropy generations was analyzed; then, the overall energetic-entropic performance of the system was predicted using several dimensionless parameters including NE, NS, Nu ∗ , and heat transfer improvement (HTI). Moreover, Witte-Shamsundar efficiency ( η W − S ) was applied to pinpoint the efficiency of the system. The highest value of HTI and η W − S was 1.7 and 0.9 that achieved by “single-nozzle; A90-D50-N12.5-M0.2” and “quad-nozzle; A30-D50-N12.5-M2,” respectively.


2021 ◽  
Vol 3 (3) ◽  
pp. 618-628
Author(s):  
György Szabados ◽  
Kristóf Lukács ◽  
Ákos Bereczky

The search for alternative fuels for internal combustion engines is ongoing. Among the alternatives, plant-based fuels can also be mentioned. Alcohol is not a common fuel for diesel engines because the physical and chemical properties of the alcohols are closer to those of gasoline. In our research, the combustion properties of diesel-n-butanol mixtures have been investigated to obtain results on the effect of butanol blending on combustion. Among the combustion properties, ignition delay, in-cylinder pressure, and heat release rate can be mentioned. They have been observed under different compression conditions on an engine on which the compression ratio can be adjusted. The method used was a quite simple one, so the speed of the engine was set to a constant 900 rpm without load, while three compression ratios (19.92, 15.27, and 12.53) were adjusted with a fuel flow rate of 13 mL/min and the pre-injection angle of 18° BTDC. Blending butanol into the investigated fuel does not significantly affect maximal values of indicated pressure, while much more effect on the pressure rising rate can be detected. Furthermore, heat release rate and ignition delay increased at every compression ratio investigated. Despite the low blending rates of butanol in the mixtures, butanol significantly affects the combustion parameters, especially at high compression ratios.


2021 ◽  
Author(s):  
Muhannad Altimemy ◽  
Justin Caspar ◽  
Saif Watheq ◽  
Alparslan Oztekin

Abstract Large Eddy Simulations (LES) are carried out for a Francis turbine operating at an ultra-low load with and without injection. The flow rate of the turbine is 40% of the design value. The injection aims to improve turbine operation for the already unstable base case away from the design flow rate. Tangential water injection was introduced through the draft tube wall in the same and opposite runner rotation direction. The injection angle was varied (15°, 30°, 45° and 60°). Two water injection rates were applied at 4% and 8 % of the optimal design flowrate. While injection with the 4% rate and 30° in the opposite runner rotation direction helped reduce pressure fluctuations downstream of the injection inlets; no injection configuration could completely mitigate the power and pressure fluctuations. The injection was found to increase the amplitude of pressure fluctuations close to the injection inlets by 2 to 20 times the magnitude of fluctuations without injection. There was a slight reduction in mean power production (4–10% loss) by injection. The high amplitude fluctuations were observed in power signals with and without the injection.


Sign in / Sign up

Export Citation Format

Share Document